Reverse Engineering is One of Your Best Weapons in the Fight Against Cyberattacks

Reverse Engineering is One of Your Best Weapons in the Fight Against Cyberattacks

Reverse engineering is a powerful tool to keep in your cybersecurity tool belt.

Most people in the cybersecurity world picture reverse engineering in its black hat — when it is being used to steal data and intellectual property. But when it is in the hands of cybersecurity experts, reverse engineering dons the white hat of the hero.

Broadly speaking, reverse engineering is about looking at a program from the outside in — often by a third party that had no hand in writing the original code. It allows those who practice it to understand how a given program or system works when no source code is available. With reverse engineering, your team can accomplish several tasks related to cybersecurity: finding system vulnerabilities, researching malware and viruses, and analyzing the complexity of restoring core software algorithms that can further protect against theft.

Security experts can apply reverse engineering themselves to understand how hard it is to hack certain software. If it turns out to be a breeze, experts can provide recommendations on ways to complicate matters for a potential hacker. This technique can be especially useful for security software developers who work in a wide range of data formats and protocols, conduct lots of research for client issues, and ensure code’s compatibility with third-party software.

No doubt, reverse engineering is a powerful tool to keep in your cybersecurity tool belt, and the more familiar you are with its use cases, the better you will be able to deploy it.

Modern Threats to Cybersecurity

Many businesses and individuals are now moving data from local storage to cloud-based storage — which offers several security and logistical advantages, but it is not invincible. Even the most protected cloud storage platforms, such as iCloud, cannot completely protect your information, and hackers using reverse engineering can still abuse the most secure algorithms guarding iOS services.

This problem is compounded as people move more information to cloud storage, which, in turn, leads to more cloud interfaces for improved user experience. With each of these developments, another potential vulnerability opens, and the risk of user data theft increases.

Zero-day exploits are another familiar foe. These threats have bedeviled cybersecurity professionals for a long time, but they remain one of the most devastating ways in which hackers can strike. Countermeasures must be swift: Once a zero-day vulnerability comes to light, cybersecurity teams have to race against hackers to engineer a patch before an attack lands. We do not have great solutions to this problem. After all, it is hard to patch up a hole you only just discovered. But because the risks are so devastating, cybersecurity teams must be proactive in defending against this type of threat — in the same way they need to be proactive against cloud vulnerabilities.

Luckily, reverse engineering has answers for both.

Threat Prevention Through Reverse Engineering

Service development and product evaluation teams can fortify cloud data protection through reverse engineering because it allows them to find problems before hackers do. By reverse engineering the programs for data storage, encryption, and decryption key storage mechanisms, teams can find the inefficiencies and vulnerabilities before any data is put at risk. From there, they can improve their solutions and implement additional layers of security.

No single “silver bullet” exists to protect an entire system, especially a complex cloud-based one. But there is an opportunity for competition, which means the solutions will only keep improving: Cybersecurity vendors and specialists will be vying to meet demand, and these third parties will use reverse engineering to research proprietary data, examining the code piece by piece to build effective protection for it.

Additionally, the cloud solutions market is gradually becoming more mature — and thus more complicated — on multiple levels. Yes, cloud vendors take care of security, but as risks stay at a high and space for improvement still exists, other specialized software vendors emerge. They create third-party solutions to further protect cloud solutions. Think encryption tools for Dropbox and enhanced security plug-ins for Salesforce.

These third-party “assistants” may require reverse engineering for differing tasks. Using Dropbox as an example, the assistants may seek to develop an effective solution to encrypt or decrypt data in the application on the fly; to do this, they must understand how Dropbox works, how it sends data, etc. In essence, this is reverse engineering (for system and format research) for better compatibility with third-party vendors.

Combating zero-day exploits also requires reverse engineering. To find those weak spots, cybersecurity teams need to think like hackers, looking at a security system from the outside in. After identifying any cracks in the armor, the team can then introduce changes to the software code that heighten its defense. This practice, when repeated often enough, can make it so difficult and costly for hackers to find vulnerabilities that it is ultimately not worth their time to do so.

Reverse Engineering in Action

To bring these concepts together, let us say a bank purchases software that accesses both the internet and its own internal network. This is not uncommon, as customers expect to be able to view their banking information online. But because the bank also needs to connect its corporate database to the internet, it opens a channel that criminals can exploit.

A successful attack could lead not only to a data breach, but also to direct financial losses for any account holder. So why do we still trust banks that connect data to the internet? Fortunately, most financial institutions have cybersecurity systems that are robust enough to repel potential thieves. Those systems were built, in most cases, with reverse engineering.

When businesses hire cybersecurity teams to strengthen their defenses against hackers, the teams conduct penetration testing, attempting to infiltrate the system from multiple points of entry. It is important to note that reverse engineering should be among the applied tools used to help specialists in collecting information about all possible attack routes.

Just as a security team in a brick-and-mortar bank performs a thorough check of the doors, windows, locks, and security cameras, a cybersecurity team inspects every potential point of digital entry to make sure the system is secure.

As more of our lives and businesses move online, it will become even more important to protect our data. As internet bandits have become more sophisticated, so, too, must white-hat cybersecurity teams. Reverse engineering is powering some of the most effective cybersecurity work out there, and it will continue to command attention in the future.

Featured

  • Maximizing Your Security Budget This Year

    Perimeter Security Standards for Multi-Site Businesses

    When you run or own a business that has multiple locations, it is important to set clear perimeter security standards. By doing this, it allows you to assess and mitigate any potential threats or risks at each site or location efficiently and effectively. Read Now

  • New Research Shows a Continuing Increase in Ransomware Victims

    GuidePoint Security recently announced the release of GuidePoint Research and Intelligence Team’s (GRIT) Q1 2024 Ransomware Report. In addition to revealing a nearly 20% year-over-year increase in the number of ransomware victims, the GRIT Q1 2024 Ransomware Report observes major shifts in the behavioral patterns of ransomware groups following law enforcement activity – including the continued targeting of previously “off-limits” organizations and industries, such as emergency hospitals. Read Now

  • OpenAI's GPT-4 Is Capable of Autonomously Exploiting Zero-Day Vulnerabilities

    According to a new study from four computer scientists at the University of Illinois Urbana-Champaign, OpenAI’s paid chatbot, GPT-4, is capable of autonomously exploiting zero-day vulnerabilities without any human assistance. Read Now

  • Getting in Someone’s Face

    There was a time, not so long ago, when the tradeshow industry must have thought COVID-19 might wipe out face-to-face meetings. It sure seemed that way about three years ago. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3