‘Smart’ Surveillance System May Tag Suspicious Or Lost People

Engineers at Ohio State University are developing a computerized surveillance system that, when completed, will attempt to recognize whether a person on the street is acting suspiciously or appears to be lost.

Intelligent video cameras, large video screens, and geo-referencing software are among the technologies that will soon be available to law enforcement and security agencies.

In the recent Proceedings of the 2008 IEEE Conference on Advanced Video and Signal Based Surveillance, James W. Davis and doctoral student Karthik Sankaranarayanan report that they've completed the first three phases of the project: they have one software algorithm that creates a wide-angle video panorama of a street scene, another that maps the panorama onto a high-resolution aerial image of the scene, and a method for actively tracking a selected target.

The ultimate goal is a networked system of “smart” video cameras that will let surveillance officers observe a wide area quickly and efficiently. Computers will carry much of the workload.

"In my lab, we've always tried to develop technologies that would improve officers' situational awareness, and now we want to give that same kind of awareness to computers," said Davis, an associate professor of computer science and engineering at Ohio State University.

The research isn't meant to gather specific information about individuals, he explained.

"In our research, we care what you do, not who you are,” Davis said. “ We aim to analyze and model the behavior patterns of people and vehicles moving through the scene, rather than attempting to determine the identity of people. We are trying to automatically learn what typical activity patterns exist in the monitored area, and then have the system look for atypical patterns that may signal a person of interest -- perhaps someone engaging in nefarious behavior or a person in need of help."

The first piece of software expands the small field of view that traditional PTZ security cameras offer.

When surveillance operators look through one of these video cameras, they get only a tiny image -- what some refer to as a "soda straw" view of the world. As they move the camera around, they can easily lose a sense of where they are looking within a larger context.

The Ohio State software takes a series of snapshots from every direction within a camera's field of view, and combines them into a seamless panorama.

Commercially available software can turn overlapping photographs into a flat panorama, Davis explained. But this new software creates a 360-degree high-resolution view of a camera's whole viewspace, as if someone were looking at the entire scene at once. The view resembles that of a large fish-eye lens.

The fish-eye view isn't a live video image; it takes a few minutes to produce. But once it's displayed on a computer screen, operators can click a mouse anywhere within it, and the camera will pan and tilt to that location for a live shot.

Or, they could draw a line on the screen, and the camera will orient along that particular route -- down a certain street, for instance. Davis and his team are also looking to add touch-screen capability to the system.

A second piece of software maps locations within the fish-eye view onto an aerial map of the scene, such as a detailed Google map. A computer can use this information to calculate where the viewspaces of all the security cameras in an area overlap. Then it can determine the geo-referenced coordinates -- latitude and longitude -- of each ground pixel in the panorama image.

In the third software component, the combination map/panorama is used for tracking. As a person walks across a scene, the computer can calculate exactly where the person is on the panorama and aerial map. That information can then be used to instruct a camera to follow him or her automatically using the camera’s pan-and-tilt control. With this system, it will be possible for the computer to “hand-off” the tracking task between cameras as the person moves in and out of view of different cameras.

"That's the advantage of linking all the cameras together in one system -- you could follow a person's trajectory seamlessly," Davis said.

His team is now working on the next step in the research: determining who should be followed.

The system won't rely on traditional profiling methods, he said. A person's race or sex or general appearance won't matter. What will matter is where the person goes, and what they do.

"If you're doing something strange, we want to be able to detect that, and figure out what's going on," he said.

To first determine what constitutes normal behavior, they plan to follow the paths of many people who walk through a particular scene over a long period of time. A line tracing each person's trajectory will be saved to a database.

"You can imagine that over a few months, you're going to start to pick up where people tend to go at certain times of day -- trends," he said.

People who stop in an unusual spot or leave behind an object like a package or book bag might be considered suspicious by law enforcement.

But Davis has always wanted to see if this technology could find lost or confused people. He suspects that it can, since he can easily pick out lost people himself, while he watches video footage from the experimental camera system that surrounds his building at Ohio State.

It never fails -- during the first week of fall quarter, as most students hurry directly to class, some will circle the space between buildings. They'll stop, maybe look around, and turn back and forth a lot.

"Humans can pick out a lost person really well," he said. "I believe you could build an algorithm that would also be able to do it."

He's now looking into the possibility of deploying a large test system around the state of Ohio using their research. Here law enforcement could link video cameras around the major cities, map video panoramas to publicly available aerial maps (such as those maintained by the Ohio Geographically Referenced Information Program), and use their software to provide a higher level of “location awareness” for surveillance.

Three Ohio State students are currently working on this project. Doctoral student Karthik Sankaranarayanan is funded by the National Science Foundation. And two undergraduate students -- Matthew Nedrich and Karl Salva -- are funded by the Air Force Research Laboratory.

Featured

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

New Products

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.