Researchers Say Bringing Down Electrical Grid Would Be Difficult

Last March, the U.S. Congress heard testimony about a scientific study in the journal Safety Science. A military analyst worried that the paper presented a model of how an attack on a small, unimportant part of the U.S. power grid might, like dominoes, bring the whole grid down.

Members of Congress were, of course, concerned. Then, a similar paper came out in the journal Nature the next month that presented a model of how a cascade of failing interconnected networks led to a blackout that covered Italy in 2003.

These two papers are part of a growing reliance on a particular kind of mathematical model -- a so-called topological model -- for understanding complex systems, including the power grid.

And this has University of Vermont power-system expert Paul Hines concerned.

"Some modelers have gotten so fascinated with these abstract networks that they've ignored the physics of how things actually work -- like electricity infrastructure," Hines says, "and this can lead you grossly astray."

For example, the Safety Science paper came to the "highly counter-intuitive conclusion," Hines says, that the smallest, lowest-flow parts of the electrical system -- say a minor substation in a neighborhood -- were likely to be the most effective spots for a targeted attack to bring down the U.S. grid.

"That's a bunch of hooey," says Seth Blumsack, Hines's colleague at Penn State.

Hines and Blumsack's recent study, published in the journal Chaos on Sept. 28, found just the opposite. Drawing on real-world data from the Eastern U.S. power grid and accounting for the two most important laws of physics governing the flow of electricity, they show that "the most vulnerable locations are the ones that have most flow through them," Hines says. Think highly connected transformers and major power-generating stations. Score one point for common sense.

"If the government takes these topological models seriously," Hines says, "and changes their investment strategy to put walls around the substations that have the least amount of flow -- it would be a massive waste of resources."

Many topological models are, basically, graphs of connected links and nodes that represent the flows and paths within a system. When a node changes or fails, its nearest connected neighbor will often change or fail next. This abstraction has provided profound insights into many complex systems, like river networks, supply chains, and highway traffic. But electricity is strange and the US electric grid even stranger.

In August of 2003 a blackout started in Ohio and then spread to New York City. Cleveland went down and soon Toronto was affected. The blackout was able to jump over long distances.

"The way topological cascades typically occur -- is they're more like real dominoes," says Hines, an assistant professor in UVM's College of Engineering and Mathematical Sciences. "When you push a domino the only thing that can fall is the one next to it. Whereas in a power grid you might push one domino and the next one to fall might be a hundred miles away."

That's because, "when a transmission line fails -- instantly, at nearly the speed of light, everything changes. Everything that is connected will change just a little bit," Hines says, "But in ways that are hard to predict." This strangeness is compounded by the fact that the U.S. electric grid is more an intractable patchwork of history than a rational design.

Which is why he and Blumsack decided to "run a horse race," he says, between topological models and a physics-based one -- applied to the actual arrangement of the North American Eastern Interconnect, the largest portion of the U.S. electric grid.

Using real-world data from a 2005 North American Electric Reliability Corporation test case, they compared how vulnerable parts of the grid appeared in the differing models. The topological measures -- so-called "characteristic path lengths" and "connectivity loss" between nodes -- came up with dramatically different and less accurate results than a model that calculated blackout size driven by the two rules that most influence actual electric transmissions -- Ohm's and Kirchhoff's laws.

In other words, the physics horse won. Or, as their paper concludes, "evaluating vulnerability in power networks using purely topological metrics can be misleading," and "results from physics-based models are more realistic and generally more useful for infrastructure risk assessment." Score one for gritty reality.

An important implication of Hines's work, funded by the National Science Foundation, is that electric grid is probably more secure that many people realize -- because it is so unpredictable. This, of course, makes it hard to improve its reliability (in another line of research, Hines has explored why the rate of blackouts in the United States hasn't improved in decades), but the up-side of this fact is that it would be hard for a terrorist to bring large parts of the grid down by attacking just one small part.

"Our system is quite robust to small things failing -- which is very good," he says, "Even hurricanes have trouble taking out power systems. Hurricanes do cause power system failures, but they don't often take out the whole system."

Blumsack agrees. "Our paper confirms that it would be possible for somebody who wanted to do something disruptive to the power grid to do so," he says. "A lot of the infrastructure is out in the open," which does create vulnerability to planned attack. "But if you wanted to black out half of the U.S., it will be much more difficult than some of these earlier models imply," he says.

"If you were a bad guy, there is no obvious thing to do to take out the power system," Hines says. "What we learned from doing the simulations is that if you take out the biggest substation, with the most flow, you get the biggest failure on average. But there were also a number of cases where, even if you took out the biggest one, you don't get much of a blackout."

"It takes an incredible amount of information," he says, "to really figure out how to make the grid fail."

 

Featured

  • Maximizing Your Security Budget This Year

    Perimeter Security Standards for Multi-Site Businesses

    When you run or own a business that has multiple locations, it is important to set clear perimeter security standards. By doing this, it allows you to assess and mitigate any potential threats or risks at each site or location efficiently and effectively. Read Now

  • New Research Shows a Continuing Increase in Ransomware Victims

    GuidePoint Security recently announced the release of GuidePoint Research and Intelligence Team’s (GRIT) Q1 2024 Ransomware Report. In addition to revealing a nearly 20% year-over-year increase in the number of ransomware victims, the GRIT Q1 2024 Ransomware Report observes major shifts in the behavioral patterns of ransomware groups following law enforcement activity – including the continued targeting of previously “off-limits” organizations and industries, such as emergency hospitals. Read Now

  • OpenAI's GPT-4 Is Capable of Autonomously Exploiting Zero-Day Vulnerabilities

    According to a new study from four computer scientists at the University of Illinois Urbana-Champaign, OpenAI’s paid chatbot, GPT-4, is capable of autonomously exploiting zero-day vulnerabilities without any human assistance. Read Now

  • Getting in Someone’s Face

    There was a time, not so long ago, when the tradeshow industry must have thought COVID-19 might wipe out face-to-face meetings. It sure seemed that way about three years ago. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file. 3

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame. 3