Tailor-Made Enzymes Protect Against Nerve Gas

Protection against nerve gas attack is a significant component of the defense system of many countries around the world. Nerve gases are used by armies and terrorist organizations, and constitute a threat to both the military and civilian populations, but existing drug solutions against them have limited efficiency.

A multidisciplinary team of scientists at the Weizmann Institute of Science succeeded in developing an enzyme that breaks down such organophosphorus nerve agents efficiently before damage to nerves and muscles is caused. Their results were recently published in the journal Nature Chemical Biology. Recent experiments performed in a U.S. military laboratory (the U.S. Army Medical Research Institute of Chemical Defense, or USAMRICD) have shown that injecting a relatively small amount of this enzyme into animals provides protection against certain types of nerve agents, for which current treatments show limited efficacy.

Nerve agents disrupt the chemical messages sent between nerve and muscle cells, causing loss of muscle control and ultimately leading to death by suffocation. Such agents interfere with the activity of acetylcholinesterase (AChE), the enzyme responsible for the breakdown of the chemical messenger acetylcholine. As a result, acetylcholine continues to exert its effect, resulting in constant muscle contraction throughout the body.

Several drugs exist that are used to treat cases of nerve agent poisoning. Although these drugs are somewhat effective when exposed to small doses of the nerve agent, they do not provide protection against high-dose exposure; they are not effective against all types of nerve agents; or they cause serious side effects. Neither are they able to prevent nor repair cerebral and motor nerve damage caused by the nerve agent.

An ideal solution to the problem is to use enzymes -- proteins that speed up chemical reactions -- to capture and break down the nerve agent before it gets the chance to bind to the AChE, thereby preventing damage. The main obstacle facing the realization of this idea, however, is that nerve agents are manmade materials and, therefore, evolution has not developed natural enzymes that are able to carry out this task.

Scientists worldwide have previously succeeded in identifying enzymes that are able to break down similar materials, but these enzymes were characterized by low efficiency. Large amounts of the enzyme were therefore required in order to break down the nerve agent, rendering their use impractical.

This is where Prof. Dan Tawfik of the Weizmann Institute’s Department of Biological Chemistry enters the picture. Prof. Tawfik’s group developed a special method to artificially induce “natural selection” of enzymes in a test tube, enabling them to engineer “tailor-made” enzymes.

The method is based on introducing many mutations to an enzyme, and then scanning the variety of mutated versions that were created in order to identify those that exhibit improved efficiency. These improved enzymes then repeatedly undergo further rounds of mutations and selection for higher efficiency. In previous studies, Prof. Tawfik showed that this method can improve the efficiency of enzymes by factors of hundreds and even thousands.

For the current task, Prof. Tawfik selected an enzyme, known as PON1, that has been extensively studied in his laboratory. The main role of this enzyme, found naturally in the human body, is to break down the products of oxidized fats that accumulate on blood vessel walls, thus preventing atherosclerosis. But PON1 seems to be a bit of a “moonlighter,” as it has also been found to degrade compounds belonging to the family of nerve agents.

However, because this activity has not fully evolved and developed through natural selection, PON1’s efficiency in carrying out the task remains very low. But by using the directed evolution method, the scientists hope that they will be able to evolve this random “moonlighting” activity into PON1’s main “day job,” which would be carried out more quickly and efficiently than before.

In the first phase, Prof. Tawfik and his team, including research fellow Dr. Moshe Goldsmith and postdoctoral student Dr. Rinkoo Devi Gupta, induced a number of mutations in PON1 -- some random and others directed at key sites on the enzyme. To identify the most effective PON1 mutants, the scientists joined forces with Yacov Ashani of the Department of Structural Biology.

The method that the scientists developed closely mimics what happens in the body upon exposure to nerve agents: They put the AChE in a test tube together with a specific mutant PON1 enzyme that they wanted to test, and added a small amount of nerve agent. In cases where the AChE continued to function properly, it could be concluded that PON1 rapidly degraded the nerve agent before it was able to cause damage to the AChE.

After several rounds of scanning, the scientists succeeded in indentifying active mutant enzymes, which are able to break down the nerve agents soman and cyclosarin effectively before any damage is caused to the AChE. These mutant enzymes have been structurally analyzed by a team of scientists, including Profs. Joel Sussman and Israel Silman and research student Moshe Ben-David, from the Department of Structural Biology. Further experiments have shown that when these enzymes were given as a preventative treatment before exposure, they afforded animals near-complete protection against these two types of nerve agents, even when exposed to relatively high levels.

The scientists plan to further expand the scope of their research and develop preventive treatment that provides protection against all types of existing nerve agents. They are also trying to develop enzymes with high enough efficiency to be able to very rapidly break down the nerve agents, so that they can be used to prevent the lethal effects of nerve agents by injection immediately after exposure.

Prof. Dan Tawfik’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Willner Family Leadership Institute for the Weizmann Institute of Science; the Sassoon and Marjorie Peress Philanthropic Fund; Miel de Botton Aynsley, UK; Samy Cohn, Brazil; Mario Fleck, Brazil; Yossie Hollander, Israel; and Roberto and Renata Ruhman, Brazil. Prof. Tawfik is the incumbent of the Nella and Leon Benoziyo Professorial Chair.

Featured

  • Integration Imagination: The Future of Connected Operations

    Security teams that collaborate cross-functionally and apply imagination and creativity to envision and design their ideal integrated ecosystem will have the biggest upside to corporate security and operational benefits. Read Now

  • Smarter Access Starts with Flexibility

    Today’s workplaces are undergoing a rapid evolution, driven by hybrid work models, emerging smart technologies, and flexible work schedules. To keep pace with growing workplace demands, buildings are becoming more dynamic – capable of adapting to how people move, work, and interact in real-time. Read Now

  • Trends Keeping an Eye on Business Decisions

    Today, AI continues to transform the way data is used to make important business decisions. AI and the cloud together are redefining how video surveillance systems are being used to simulate human intelligence by combining data analysis, prediction, and process automation with minimal human intervention. Many organizations are upgrading their surveillance systems to reap the benefits of technologies like AI and cloud applications. Read Now

  • The Future is Happening Outside the Cloud

    For years, the cloud has captivated the physical security industry. And for good reason. Remote access, elastic scalability and simplified maintenance reshaped how we think about deploying and managing systems. But as the number of cameras grows and resolutions push from HD to 4K and beyond, the cloud’s limits are becoming unavoidable. Bandwidth bottlenecks. Latency lags. Rising storage costs. These are not abstract concerns. Read Now

  • Right-Wing Activist Charlie Kirk Dies After Utah Valley University Shooting

    Charlie Kirk, a popular conservative activist and founder of Turning Point USA, died Wednesday after being shot during an on-campus event at Utah Valley University in Orem, Utah Read Now

New Products

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.