Into the Ethernet

Manufacturers take advantage of powerful communication platform

Over the past several years, much attention has been paid to the development and deployment of IP-based video surveillance systems. However, the rate of adoption has been slowed in part by the heavy bandwidth consumption of video streams and their resulting adverse impact on the network.

Undaunted by these restraints, manufacturers of access control systems with relatively low data rates have been gradually introducing network-based offerings of their own. The idea is to take advantage of the powerful and ubiquitous TCP/IP communication platform, without consuming large quantities of bandwidth.

Furthermore, an IP network is relatively affordable to deploy and universally understood. Therefore, installation and configuration challenges associated with proprietary technologies are all but eliminated.

However, in many cases, a wire-line network connection is not readily available at all locations where access control points may be required. Few buildings -- even those constructed in the past decade -- include network connections (RJ-45 ports) at their doors and gates. As a result, wireless technologies are increasingly being considered to deploy these Ethernet-based edge devices.

Important Considerations
There are many factors to consider when designing and deploying a wireless Ethernet-based access control system:

Selecting the right products. The single most important factor in ensuring the successful deployment of a wireless Ethernet access control system is selecting the right product and transmission frequency for the application.

For example, if the installation includes short-range indoor transmission to a few doors, a wireless Ethernet product will suffice. However, if the system includes a long-range connection to remote buildings or across larger distances to gates in the facility, then the choice of products is narrowed considerably. Other factors to consider are the ease of installation and long-term maintenance and support of the product suite. Also, purchasing the lowest cost hardware may not always be the answer, especially if the product has a steep learning curve and/or the technical support offered by the manufacturer is sub-par.

Antenna selection. An often-overlooked aspect of the wireless system is the antenna. For longer distances, or in crowded RF environments, it is imperative that a directional antenna be used whenever possible. This increases the signal- to-noise ratio, and therefore both the transmission and receive power of the radio, and allows the system to function well now and in years to come as the RF envrionment changes.

Tamper-proofing your installation. Radio transceivers are not -- by themselves -- a primary target for vandals. However, the best way to keep an investment safe is to put it out of reach of the public. Install the equipment up a pole or on top of a building. This is generally more favorable from an RF transmission standpoint as well.

In-band interference. The majority of Ethernet radios sold in North America today use one of three ISM bands: 900 MHz, 2.4 GHz and 5.8 GHz. These are unlicensed bands, and anyone is free to deploy FCC-certified products. For larger projects, conduct a site survey with a portable spectrum analyzer prior to implementation to assess the nature of the particular band chosen. If it turns out to be crowded, the in-band noise floor will be high and the signal-to-noise ratio will be unfavorable, thereby adversely affecting the wireless range and performance. Alternatively, since spectrum analyzers are expensive, end users also can select a radio transceiver that has the ability to scan the ISM band in which it operates and assess the spectrum viability.

Near-band interference. Another potential pitfall is RF noise interference from sources spectrally adjacent to the ISM band. For example, the FCC-reserved space for the 900 MHz band is 902 to 928 MHz. Unfortunately, several legacy paging systems use the space immediately above this in the 929 to 931 MHz range. While this frequency is not actually in the ISM band, the near-band interference can be significant since the output power from the paging tower is often several orders of magnitude higher than the lower power commercial off-theshelf wireless Ethernet systems running in the ISM band itself. To address this, notch filters preferentially discard all frequencies except the band in which you are operating. This allows the installer to add an inline component to neutralize the adverse effects of this interference.

Training. Many wireless Ethernet manufacturers offer free technical training, either with online webinars or, in some cases, on site and in person, in conjunction with their network of manufacturers’ reps. End users should participate in this training before attempting to install a large-scale wireless access control system.

Technical support. If an end user is new to the technology and the selected product suite, it is important to have access to the manufacturer’s technical support team during the early stages of the job. Beginning the project late on a Friday afternoon and planning to work through the weekend may not be in your best interest until you are comfortable with the process and potential issues.

Replacement/spare parts. As with any mission-critical network technology, it is always a good idea to keep spare parts on hand. For example, if you have deployed 25 radio transceivers, antennas and mounting hardware, it might make sense to purchase one or two extra kits in case of a failure.

The most likely cause of system failure is human error. The most important thing to do prior to beginning an installation is to read the user manual. Always use high-quality cabling and connector components. Skimping can cost you hundreds of dollars in labor costs and down time. As with any networking device, check the connectors and cabling to make sure they are seated properly and are in good working condition.

Additional Factors
If there is a poor signal-to-noise ratio, and as a result, the system is dropping Ethernet packets and unable to reliably send data, you should check to see if there is inband or near-band interference in the area, or if your neighbor has installed a high-powered source of RF interference recently. Also determine if you are attempting to transmit too far or through obstacles with an RF spectrum not designed for this purpose. Consider swapping the radios for another frequency that may be better suited for your installation. Also, check to see if the system is using directional antennas. Omnidirectional antennas suffer a double whammy: not only do they have less transmission power, but they also pick up interference from all directions. If you are already using a directional antenna, try upgrading to a more powerful model with more RF gain.

In reviewing the published cost-benefit analyses of wired IP-based access control systems, we see that it generally makes sense to use the existing network infrastructure -- versus installing dedicated cabling -- to transmit access control data from doors and gates back to a central management server or off-site backup. It is for this reason that most industry experts believe that, over time, traditional proprietary access control systems will be replaced by open-standard Ethernet-based systems.

To examine a basic total cost of ownership, use the formula of TCO = [(equipment + installation labor) + disruption in service] + long-term maintenance to compare and contrast wired versus wireless access control solutions. It will reveal that using wireless transmission technologies is not always wise. For example, when network cable is already in place at the door or for short cable runs, the additional cost of the radio and antenna at the control panel or door is not justified. If new cable has to be pulled, then the total cost of cable, labor and disruption of service must be compared to the cost of a radio transceiver and antenna at the panel or door.

There are many compelling reasons to use open standards -- such as Ethernet -- to transmit access control data. Furthermore, in many cases, it makes sense to send an Ethernet packet via a low-cost wireless radio transceiver rather than copper cable or glass fiber. In the end, this cost-benefit analysis must be performed for each project undertaken, which will in turn reveal the appropriate network architecture for the job.

Back to the Future
The ability to use a single radio platform to transmit Ethernet and RS-232/RS-485 serial data is compelling. Therefore, much work is currently being done in integrated Ethernet/serial radio transceivers. Look for the continued release and refinement of this dual-platform approach to add to the current generation of radios capable of handling specific proprietary access control protocols such as Wiegand.

The latest release in the class of 802.11 Ethernet transmission systems is the “N” specification. The 802.11N protocol uses MIMO multipath processing and channel bonding to offer some advantages in range and net throughput over traditional Wi-Fi solutions. Several mainstream manufacturers have released products in this category with more to come over the next several years.

During the last five years, mobile phone technology has evolved to include data transmission at moderate speeds and distances. Integrating this technology into fixed-in-place devices allows the system designer to install 2.5 G and 3 G network cards to send/receive data from a variety of platforms. These technologies are becoming faster and more cost effective.

WiMax, a new technology that began its conceptual development in 2001, is based upon the 802.16 standard and uses fixed-in-place high-powered transmission equipment to send and receive high-speed data. The WiMax forum, which developed and manages the framework, describes WiMAX as “a standards-based technology enabling the delivery of last-mile wireless broadband access as an alternative to cable and DSL.” Connecting to a WiMax network will allow the end user to send and receive moderate to high-speed data rates with the network to connect remote access-control devices.

Since the data rates in question are orders of magnitude lower than in the case of IP video products, the challenges associated with bandwidth consumption also are minimized, and the rate of adoption of networkbased access control systems will continue to grow. The use of wireless transmission to support the remote deployment of Ethernet devices is a natural extension of the technology and will only accelerate the growth of IP-based access control solutions.

Featured

  • Maximizing Your Security Budget This Year

    Perimeter Security Standards for Multi-Site Businesses

    When you run or own a business that has multiple locations, it is important to set clear perimeter security standards. By doing this, it allows you to assess and mitigate any potential threats or risks at each site or location efficiently and effectively. Read Now

  • New Research Shows a Continuing Increase in Ransomware Victims

    GuidePoint Security recently announced the release of GuidePoint Research and Intelligence Team’s (GRIT) Q1 2024 Ransomware Report. In addition to revealing a nearly 20% year-over-year increase in the number of ransomware victims, the GRIT Q1 2024 Ransomware Report observes major shifts in the behavioral patterns of ransomware groups following law enforcement activity – including the continued targeting of previously “off-limits” organizations and industries, such as emergency hospitals. Read Now

  • OpenAI's GPT-4 Is Capable of Autonomously Exploiting Zero-Day Vulnerabilities

    According to a new study from four computer scientists at the University of Illinois Urbana-Champaign, OpenAI’s paid chatbot, GPT-4, is capable of autonomously exploiting zero-day vulnerabilities without any human assistance. Read Now

  • Getting in Someone’s Face

    There was a time, not so long ago, when the tradeshow industry must have thought COVID-19 might wipe out face-to-face meetings. It sure seemed that way about three years ago. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • ComNet CNGE6FX2TX4PoE

    The ComNet cost-efficient CNGE6FX2TX4PoE is a six-port switch that offers four Gbps TX ports that support the IEEE802.3at standard and provide up to 30 watts of PoE to PDs. It also has a dedicated FX/TX combination port as well as a single FX SFP to act as an additional port or an uplink port, giving the user additional options in managing network traffic. The CNGE6FX2TX4PoE is designed for use in unconditioned environments and typically used in perimeter surveillance. 3

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.” 3