Wireless mesh

Challenge or Opportunity?

Wireless mesh is changing the name of the game

Wireless has been in the physical security space for years, especially with point-to-point bridges. But the newcomers— especially in the field of wireless mesh—are changing the game. Will wireless be as ubiquitous for outdoor deployments as cable or fiber?

There is still skepticism in the physical security community regarding wireless as a go-to solution for security and surveillance. Will the signal be jammed? Will there be enough capacity? How difficult is it to design and install? Do you need to have specialized expertise, or even a sub-contractor, to deploy it successfully? What is hype and what is reality?

Wireless: Niche or Mainstream?

Wireless transmission is still considered “niche” by many industry watchers; however, they believe that wireless is an excellent option that is gaining acceptance among integrators and end users. The advent of multiple input/multiple output wireless mesh technology will accelerate this trend, as it delivers a fiber-equivalent throughput of up to 300 MBps with 0.9 ms latency.

The benefits of wireless are well documented. Wireless connections have a much lower cost of installation compared to trenching and digging—as low as one-tenth the cost of fixed infrastructure. End users will avoid lengthy architectural approvals and many of the disruptions associated with closing streets, re-routing traffic and unsightly construction. In indoor settings, wireless is often the solution for historic buildings where drilling and running cable would create a business disruption.

Paradoxically, wireless can be more reliable than fiber, if a network specifies redundant paths. Fiber can be cut either accidentally or maliciously.

But consider the downsides of wireless as well. Wired infrastructure has standard performance over a specified distance. On the other hand, wireless systems operate in a dynamic, changing environment, both physically—e.g., seasonal changes due to foliage or new construction— and regarding RF disruption.

Key Considerations

All wireless technologies are not the same, and extensive due diligence should be part of the technology selection process. Wireless technology is essential to a system's success, so make sure to consider the following points:

Capacity. Without sufficient bandwidth, cameras cannot deliver evidencegrade video or support video analytics. With the advent of megapixel, HD and thermal imaging cameras—all of which require up to 35 MBps per megapixel camera—a wireless network must be able to withstand increased traffic.

Multicasting. Multicasting enables video feeds to be sent to multiple destinations for simultaneous viewing and recording. Multicasting is essential for monitoring, but it can severely burden a wireless network. Many of the analog cameras, when attached to the IP network via encoders, appear to be sending multicast traffic. Even without a formal multicasting requirement, a system needs to be able to transport multicast packets without killing the throughput.

Security. Wireless technologies— point-to-point, point-to-multipoint or mesh—used for video surveillance are not cellular, nor are they Wi-Fi accessbased, so they do not expose the users to the same vulnerabilities. The most secure systems offer end-to-end encryption supporting WPA2 and WEP. In addition to encryption, encapsulation schemes also can be used to add a layer of security.

Flexibility. The technology should make it easy to gradually grow the network, as funds become available, new departments come on board or there is a need to cover new areas.

Ease of setup. This is especially critical for temporary installations, where the installer may have only a few hours to get the system in place. Even in fixed installs, the cameras often need to be repositioned as conditions change.

Multi-hop capability. This is ideal for navigating around obstructions, resulting in less dependency on wired or wireless backhaul of point-to-multipoint systems. In a city, point-to-multipoint systems may not be able to reach into the urban canyons. Look for systems that support five to 10 hops before backhaul is needed. This will lower your cost for backhaul links, fiber or dedicated point-to-point wireless.

End-to-end quality of service and traffic prioritization. This is crucial for video that is extremely sensitive to variations in latency. Excessive delay will result in the system being unresponsive to the PTZ commands, while jitter—packets arriving out of order— will cause the video to freeze or drop out. Access-point-based systems, along with mesh APs, are especially subject to these limitations.

On the business side, check for verifiable successes in the field and look at comparable deployments. Wireless often has difficulty scaling; a technology that can handle a dozen cameras may not scale up to 50. Beware of data rates listed in vendors' marketing literature. These are theoretical and, as a rule of thumb, usually translate to 30 to 50 percent of real-world throughput.

Taking Connectivity to Moving Vehicles

Real-time visibility into trains, buses and industrial machinery is a frequent customer requirement. Recorded video is fine for investigations after the fact, but many transit agencies and industrial companies are looking for real-time surveillance of unfolding situations, or the ability to know what's ahead.

One of the first large-scale wireless video surveillance deployments is Seoul Korea's subway system. After 198 people perished in the Daegu subway fire in 2003, the Seoul Metropolitan Rapid Transit Corp. began investigating realtime wireless video surveillance systems to help protect subway riders and transit workers against potential fires, accidents, thefts and other incidents. SMRT has a ridership of more than 2 million daily and involves a total of 201 subway trains at 148 stations.

The Daegu fire was caused by an arsonist who set fire to a car train that was stopped at the Jungangho station. The fire then spread to a second train that had entered the station from the opposite direction. After the incident, SMRT wanted a system that allowed train operators to have access to video of the station before entering.

The ability to stream video from a station's cameras to a monitor in a train moving at speeds of 50 mph was critical. Wireless mesh technology was the only option to transmit video to and from subway cars, as it provided seamless handoff and roaming along the fixed wireless infrastructure. The subway environment is particularly harsh for RF communications because of the refl ective metal surfaces, noise, vibrations and high voltage electric power.

A total of 1,000 mesh nodes will be deployed for all four SMRT subway lines, along with 350 cameras in the stations and 300 in the trains. The wireless infrastructure delivers 20 MBps of capacity, enabling real-time streaming video at 30 frames per second to and from the trains moving at 50 mph. In addition to providing video surveillance from the station to train operators, the network also provides video surveillance from inside the passenger trains to a monitoring center. When completed this year, it will be the world's first real-time, high-bandwidth mobile wireless video surveillance subway system, costing an estimated $60 million.

Mobile real-time video is the wave of the future for city-wide public safety, industrial sites, campus environments, mining and transportation. To maintain real-time connections between fixed and mobile nodes moving at high speeds— without dropping packets or introducing latency or jitter— only wireless mesh will fit the bill.

Featured

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

New Products

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.