Service To Harness Cell Networks For Emergency Communication

When a major weather incident, terrorist threat, or other emergency affects the American population, emergency personnel need a way to inform residents of what to do. Television and radio alerts help spread the word, but they cannot reach everyone. Fortunately, many people carry another method of communication -- a cellular phone. In the future, a message could be broadcasted to cellular and paging devices to notify the public of an approaching storm or other emergency.

The federal government is developing the Commercial Mobile Alert Service (CMAS), which will harness wireless networks for emergency communication. Two U.S. Department of Homeland Security (DHS) offices -- the Science & Technology Directorate (S&T) and the Federal Emergency Management Agency (FEMA) Integrated Public Alert and Warning System (IPAWS) -- are working with wireless carriers, including AT&T and Verizon Wireless, to develop a national capability to send emergency alerts to mobile devices.

Unlike optional alerts people can subscribe to, CMAS would automatically send emergency messages to cell phones in a given geographic area free of charge. CMAS would become an integral part of IPAWS, which also includes a modernized Emergency Alert System (EAS) and other public alert and warning technologies.

EAS messages, usually broadcast over television or radio, are effective at reaching people in their homes, but the Federal Government must think about connecting with an increasingly mobile American population. Cell phones are ideal for reaching more of the population in more locations -- increasing the relevancy and effectiveness of alerts. About 89 percent of the nation’s population owned a mobile device as of June 2009, according to the industry group CTIA -- The Wireless Association. “[Cellular alerting would] allow emergency managers to have a greater reach to the public,” said Denis Gusty, DHS S&T CMAS program manager.

CMAS would send a free broadcast message to cell phone customers in a geographic area that might be affected by an emergency, according to Gusty. The process would be similar to the AMBER Alert messages cell phone owners can sign up to receive when a child has been abducted. These messages help marshal public assistance. Virginia Tech, the university where 33 people died during a 2007 school shooting, offers a subscription phone and e-mail emergency alert system in addition to electronic message boards in classrooms and emergency telephone hotlines.

CMAS could distribute presidential alerts, AMBER Alerts, and imminent threat alerts. “Most imminent threat alerts warn residents about storms, including tornadoes and hurricanes,” Gusty said. The messages would likely be brief and direct residents to a local resource such as a participating EAS television or radio station for additional information. Cell phone owners who did not want to receive the notifications would be able to opt out of receiving imminent threat or AMBER Alert messages, but not the presidential alerts.

Sending broadcast messages directly to residents would help prevent panic during an emergency, according to Kevin McGinnis, program advisor for the National Association of State EMS Officials. McGinnis served on the Federal Communications Commission (FCC) Commercial Mobile Service Alert Advisory Committee (CMSAAC), which helped establish the initial requirements for CMAS in 2007, and participated in the CMAS Stakeholder Forum discussing the project in July 2009.

CMAS alerts would inform residents of the proper course of action to take in an emergency. For example, CMAS alerts could deliver information to residents about whether or not it was necessary to evacuate or shelter in place. Providing this critical information can help reduce the influx of telephone calls from frantic residents to 911 communications centers. CMAS would send residents the information they need directly to their cell phones and refer them to appropriate sources for more details. “You have people who suddenly know there is a problem and there is a solution, and both are appearing on their mobile phone,” McGinnis said.

“Government agencies worked with wireless carriers for a year to develop specifications that will allow federal equipment to interface with commercial cellular networks,” Gusty said. FEMA and FCC officials announced the adoption of the C Interface Specification on Dec. 7, 2009, which marked the start of a 28-month timeframe for the wireless industry to build the network infrastructure needed to carry CMAS messages, according to FEMA. The system could be operational sooner than the April 2012 deadline established by the FCC pursuant to the Warning, Alert, and Response Network Act, according to Gusty. The law, part of the SAFE Port Act of 2006, mandated the development of CMAS.

The C Interface Specification is based on the Organization for the Advancement of Structural Information Standards (OASIS) Common Alerting Protocol (CAP) and the CAP IPAWS Profile. DHS worked with local, State, and tribal officials to develop requirements for the CAP IPAWS Profile version 1.2 and submitted these requirements to OASIS, a not-for-profit consortium that drives the development, convergence and adoption of open standards for the global information society. OASIS approved the CAP IPAWS Profile on Oct. 13, 2009.

The CAP standard will allow messages to be used across multiple alert systems, according to FEMA. It is part of FEMA’s effort to develop the IPAWS and its key component CMAS as the next generation of emergency alert infrastructure.

“We are pleased with the recent progress,” said Antwane Johnson, IPAWS director. “The input received from industry and other stakeholders has been vital to developing a profile that will meet the needs of the emergency alerting community.”

More than 80 stakeholders attended a DHS S&T stakeholder event, the CMAS Stakeholder Forum, where members of local, State, and Federal governments, industry, and academia reviewed CMAS research and development efforts last year. Participants also discussed the necessary next steps to make the system a reality.

A key area of discussion has focused on how to determine the size of the area where an alert should be sent, according to McGinnis. The existing EAS distributes alerts by county, but CMAS could potentially target a smaller area near a cell tower or on a global positioning system grid, he said. Federal officials and stakeholders need to determine how best to notify the people affected during an emergency.

To learn more about CMAS, visit http://cmasforum.com.

Featured

  • Maximizing Your Security Budget This Year

    Perimeter Security Standards for Multi-Site Businesses

    When you run or own a business that has multiple locations, it is important to set clear perimeter security standards. By doing this, it allows you to assess and mitigate any potential threats or risks at each site or location efficiently and effectively. Read Now

  • New Research Shows a Continuing Increase in Ransomware Victims

    GuidePoint Security recently announced the release of GuidePoint Research and Intelligence Team’s (GRIT) Q1 2024 Ransomware Report. In addition to revealing a nearly 20% year-over-year increase in the number of ransomware victims, the GRIT Q1 2024 Ransomware Report observes major shifts in the behavioral patterns of ransomware groups following law enforcement activity – including the continued targeting of previously “off-limits” organizations and industries, such as emergency hospitals. Read Now

  • OpenAI's GPT-4 Is Capable of Autonomously Exploiting Zero-Day Vulnerabilities

    According to a new study from four computer scientists at the University of Illinois Urbana-Champaign, OpenAI’s paid chatbot, GPT-4, is capable of autonomously exploiting zero-day vulnerabilities without any human assistance. Read Now

  • Getting in Someone’s Face

    There was a time, not so long ago, when the tradeshow industry must have thought COVID-19 might wipe out face-to-face meetings. It sure seemed that way about three years ago. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • Hanwha QNO-7012R

    Hanwha QNO-7012R

    The Q Series cameras are equipped with an Open Platform chipset for easy and seamless integration with third-party systems and solutions, and analog video output (CVBS) support for easy camera positioning during installation. A suite of on-board intelligent video analytics covers tampering, directional/virtual line detection, defocus detection, enter/exit, and motion detection. 3

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.” 3

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3