New Sensor Developed By Researchers Can Detect Tiny Traces Of Explosives

 To create the sensors, chemical engineers led by Michael Strano coated carbon nanotubes -- hollow, one-atom-thick cylinders made of pure carbon -- with protein fragments normally found in bee venom. This is the first time those proteins have been shown to react to explosives, specifically a class known as nitro-aromatic compounds that includes TNT.

If developed into commercial devices, such sensors would be far more sensitive than existing explosives detectors -- commonly used at airports, for example -- which use spectrometry to analyze charged particles as they move through the air.

“Ion mobility spectrometers are widely deployed because they are inexpensive and very reliable. However, this next generation of nanosensors can improve upon this by having the ultimate detection limit, [detecting] single molecules of explosives at room temperature and atmospheric pressure,” said Strano, the Charles (1951) and Hilda Roddey Career Development Associate Professor of Chemical Engineering.

A former graduate student in Strano’s lab, Daniel Heller (now a Damon Runyon Fellow at MIT’s David H. Koch Institute for Integrative Cancer Research), is lead author of a paper describing the technology in the Proceedings of the National Academy of Sciences. The paper appears online this week.

Strano has filed for a patent on the technology, which makes use of protein fragments called bombolitins. “Scientists have studied these peptides, but as far as we know, they’ve never been shown to have an affinity for and recognize explosive molecules in any way,” he says.

In recent years, Strano’s lab has developed carbon-nanotube sensors for a variety of molecules, including nitric oxide, hydrogen peroxide and toxic agents such as the nerve gas sarin. Such sensors take advantage of carbon nanotubes’ natural fluorescence, by coupling them to a molecule that binds to a specific target. When the target is bound, the tubes’ fluorescence brightens or dims.

The new explosives sensor works in a slightly different way. When the target binds to the bee-venom proteins coating the nanotubes, it shifts the fluorescent light’s wavelength, instead of changing its intensity. The researchers built a new type of microscope to read the signal, which can’t be seen with the naked eye. This type of sensor, the first of its kind, is easier to work with because it is not influenced by ambient light.

“For a fluorescent sensor, using the intensity of the fluorescent light to read the signal is more error-prone and noisier than measuring a wavelength,” Strano said.

Each nanotube-peptide combination reacts differently to different nitro-aromatic compounds. By using several different nanotubes coated in different bombolitins, the researchers can identify a unique “fingerprint” for each explosive they might want to detect. The nanotubes can also sense the breakdown products of such explosives.

“Compounds such as TNT decompose in the environment, creating other molecule types, and those derivatives could also be identified with this type of sensor,” Strano said. “Because molecules in the environment are constantly changing into other chemicals, we need sensor platforms that can detect the entire network and classes of chemicals, instead of just one type.”

The researchers also showed that the nanotubes can detect two pesticides that are nitro-aromatic compounds as well, making them potentially useful as environmental sensors. The research was funded by the Institute for Soldier Nanotechnologies at MIT.

Philip Collins, a professor of physics at the University of California at Irvine, says the new approach is a novel extension of Strano’s previous work on carbon-nanotube sensors. “It’s nice what they’ve done -- combined a couple of different things that are not sensitive to explosives, and shown that the combination is sensitive,” says Collins, who was not involved in this research.

The technology has already drawn commercial and military interest, Strano says. For the sensor to become practical for widespread use, it would have to be coupled with a commercially available concentrator that would bring any molecules floating in the air in contact with the carbon nanotubes.

“It doesn’t mean that we are ready to put these onto a subway and detect explosives immediately. But it does mean that now the sensor itself is no longer the bottleneck,” Strano said. “If there’s one molecule in a sample, and if you can get it to the sensor, you can now detect and quantify it.”

Other researchers from MIT involved in the work include former postdocs Nitish Nair and Paul Barone; graduate students Jingqing Zhang, Ardemis Boghossian and Nigel Reuel; and undergraduates George Pratt ’10 and current junior Adam Hansborough.

 

Featured

  • AI Is Now the Leading Cybersecurity Concern for Security, IT Leaders

    Arctic Wolf recently published findings from its State of Cybersecurity: 2025 Trends Report, offering insights from a global survey of more than 1,200 senior IT and cybersecurity decision-makers across 15 countries. Conducted by Sapio Research, the report captures the realities, risks, and readiness strategies shaping the modern security landscape. Read Now

  • Analysis of AI Tools Shows 85 Percent Have Been Breached

    AI tools are becoming essential to modern work, but their fast, unmonitored adoption is creating a new kind of security risk. Recent surveys reveal a clear trend – employees are rapidly adopting consumer-facing AI tools without employer approval, IT oversight, or any clear security policies. According to Cybernews Business Digital Index, nearly 90% of analyzed AI tools have been exposed to data breaches, putting businesses at severe risk. Read Now

  • Software Vulnerabilities Surged 61 Percent in 2024, According to New Report

    Action1, a provider of autonomous endpoint management (AEM) solutions, today released its 2025 Software Vulnerability Ratings Report, revealing a 61% year-over-year surge in discovered software vulnerabilities and a 96% spike in exploited vulnerabilities throughout 2024, amid an increasingly aggressive threat landscape. Read Now

  • Motorola Solutions Named Official Safety Technology Supplier of the Ryder Cup through 2027

    Motorola Solutions has today been named the Official Safety Technology Supplier of the 2025 and 2027 Ryder Cup, professional golf’s renowned biennial team competition between the United States and Europe. Read Now

  • Evolving Cybersecurity Strategies

    Organizations are increasingly turning their attention to human-focused security approaches, as two out of three (68%) cybersecurity incidents involve people. Threat actors are shifting from targeting networks and systems to hacking humans via social engineering methods, living off human errors as their most prevalent attack vector. Whether manipulated or not, human cyber behavior is leveraged to gain backdoor access into systems. This mainly results from a lack of employee training and awareness about evolving attack techniques employed by malign actors. Read Now

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.