Network the Campus

Networking simplifies installation; technology solves application challenges

IP-based video systems seem tailor-made for the education and campus environment. Using IP and connecting across information networks, these systems can reach maximum effectiveness in the environment of modern networked campuses.

Network connectivity ensures surveillance video can be made available from anywhere on the campus without the added expense of running coaxial cable to each camera. Existing networks are typically campuswide, meaning that the ability to provide critical video for any surveillance need is as near as the closest network node.

Network connectivity is simplifying campuswide video coverage, at a time when the need for surveillance and security on college and university campuses is greater than ever. The 2007 tragedy at Virginia Tech, in which 32 people were killed and many others wounded, remains a stark reminder of the need for campus security. Assaults and rape also are ongoing security concerns at college dormitories, and a multitude of less-serious incidents—including vandalism, theft and fights among students—further reflects an accelerating need for security and surveillance systems on campuses.

Integration Opportunity

IP networking drives all kinds of systems for various uses on campuses and presents an opportunity to expand the effects of integrating security and other systems. Today, college classrooms often are integrated with networked audiovisual systems that also tie into the university’s IT backbone. The connectivity and functionality of these systems also enable them to play a role in security and emergency response, in addition to their everyday functions.

An integrated audiovisual system is part of the new technologydriven classroom environment. Intelligent solutions can integrate video, computers, projectors, whiteboards and handheld tablets, along with a wireless audio system. Beyond the educational benefits of such systems, they can be helpful in case of an emergency situation or an outbreak of violence.

Cutting-edge technology is helping meet challenges brought on by system components spread across large areas and is enabling IP-based surveillance systems to become an even more integral part of campus life.

For example, a wireless classroom audio system could double as an element of an emergency response system. Infrared technology- based audio systems help teachers and students communicate better and can include the use of a wireless pendant microphone worn by the teacher that sends a signal to infrared receivers connected to speakers to amplify the sound of the teacher’s voice. In case of an emergency, the audio system works in tandem with an integrated document camera to allow a teacher to quietly initiate an immediate first response.

The document camera is primarily used to capture images of books, maps or other teaching materials and project them on a screen in the classroom. A network document camera, similar to the video cameras used for surveillance, provides exceptional images in virtually any lighting condition. In case of an incident or an emergency, the teacher can press a panic button located on the pendant microphone. This sends a signal to automatically reposition the document camera to focus not on a book or map but on the classroom as a whole. In effect, the document camera instantly becomes a video surveillance camera, and video is incorporated into the school’s networked surveillance system to provide visual information about an unfolding event. Pressing the panic button also sends an immediate alarm to authorities, enabling immediate response and action to secure the campus, if needed.

Application Challenges

The campus surveillance environment does present a number of application challenges. Among them is the question of how to maintain and support surveillance systems, given that system components are spread across a large area. Cutting-edge technology is helping meet all these challenges and is enabling IP-based surveillance systems to become an even more integral part of campus life.

Outdoor applications. Cameras must be able to withstand environmental elements and continue to operate. Outdoor cameras should meet international IP66 standards for dust and moisture resistance in order to be installed under building eaves or in other environments subject to wind and rain. A dehumidification device and/or a heater can be used to offset extreme operating conditions.

Threat of vandalism. Cameras must be able to stand up to abuse, vandalism and other rough treatment. Engineering and design features, and use of special materials, enable cameras to continue operating even after shocks and impacts that would disable a conventional camera.

Camera coverage for large areas. Using fewer cameras to cover a larger area can help to keep system costs low, and megapixel technology now makes this possible. High-resolution images enable operators to zoom in on an image to see greater detail, such as a vehicle license plate, even on recorded video. Operators can direct PTZ cameras to cover larger areas, and some PTZ cameras automatically pan and tilt to follow a moving subject, keeping it in the center of the image. PTZ cameras also can be programmed to present a sequence of pre-programmed views and/or to move to a specific position in response to an alarm.

Image quality. Identifying faces is important in the campus surveillance environment, so image quality is paramount. Resolution is one factor in quality, and intelligence inside the camera works together with megapixel sensors to further improve images. For example, image processing technology can transform dark areas into natural, high-contrast images such as those seen by the human eye. Adaptive digital noise reduction takes care of the “noise” in a camera image, a process that is especially useful for clarifying images of moving objects.

Lighting. Cameras can help to offset the challenge presented by variable lighting in campus environments. Cameras must be able to capture important details even when an image is backlit. Image processing manages the dynamic range of a video image, which is the span of gradations from the lightest to the darkest areas. Intelligence inside the camera uses natural-contrast image correction to optimize contrast of each pixel and to faithfully reproduce objects in any area and position. The result is better images despite extreme lighting conditions. Day/night cameras also enable 24/7 coverage across the campus.

System costs and preserving previous investment. Campuses that have existing analog security systems often want to preserve that investment as they transition to IP video. Video encoders provide the critical technology link between a legacy analog system and a new IP system. Strategic use of encoders can provide a seamless migration path to connect older systems with newer technologies, while preserving the value of existing resources and incorporating them into a modern networked system. Advanced encoders may include intelligent features such as face detection, H.264 highprofile format transmission and video motion detection. There also are numerous other solutions on the market that enable use of existing infrastructure.

Keeping Systems Humming

In the campus environment, system components can be located far from the central control room. Although components may be out of sight, system operators should create a plan to keep all system components working dependably and efficiently. Ongoing system oversight should include verifying that cameras are functioning properly and that all features are functioning at their full capability. Regular troubleshooting and updates to the network along with your cameras and recorders will ensure you get top performance and the best possible ROI from your entire system.

Take a Wider View

A broader mindset enables campuses to leverage multiple technologies to improve security and to use security systems to enhance non-security functions. Taking a wider view can maximize the benefits of modern technology and make it easier to cost-justify technology investments.

 

This article originally appeared in the July 2011 issue of Security Today.

Featured

  • The Next Generation

    Video security technology has reached an inflection point. With advancements in cloud infrastructure and internet bandwidth, hybrid cloud solutions can now deliver new capabilities and business opportunities for security professionals and their customers. Read Now

  • Help Your Customer Protect Themselves

    In the world of IT, insider threats are on a steep upward trajectory. The cost of these threats - including negligent and malicious employees that may steal authorized users’ credentials, rose from $8.3 million in 2018 to $16.2 million in 2023. Insider threats towards physical infrastructures often bleed into the realm of cybersecurity; for instance, consider an unauthorized user breaching a physical data center and plugging in a laptop to download and steal sensitive digital information. Read Now

  • Enhanced Situation Awareness

    Did someone break into the building? Maybe it is just an employee pulling an all-nighter. Or is it an actual perpetrator? Audio analytics, available in many AI-enabled cameras, can add context to what operators see on the screen, helping them validate assumptions. If a glass-break detection alert is received moments before seeing a person on camera, the added situational awareness makes the event more actionable. Read Now

  • Transformative Advances

    Over the past decade, machine learning has enabled transformative advances in physical security technology. We have seen some amazing progress in using machine learning algorithms to train computers to assess and improve computational processes. Although such tools are helpful for security and operations, machines are still far from being capable of thinking or acting like humans. They do, however, offer unique opportunities for teams to enhance security and productivity. Read Now

Featured Cybersecurity

New Products

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3