Network the Campus

Networking simplifies installation; technology solves application challenges

IP-based video systems seem tailor-made for the education and campus environment. Using IP and connecting across information networks, these systems can reach maximum effectiveness in the environment of modern networked campuses.

Network connectivity ensures surveillance video can be made available from anywhere on the campus without the added expense of running coaxial cable to each camera. Existing networks are typically campuswide, meaning that the ability to provide critical video for any surveillance need is as near as the closest network node.

Network connectivity is simplifying campuswide video coverage, at a time when the need for surveillance and security on college and university campuses is greater than ever. The 2007 tragedy at Virginia Tech, in which 32 people were killed and many others wounded, remains a stark reminder of the need for campus security. Assaults and rape also are ongoing security concerns at college dormitories, and a multitude of less-serious incidents—including vandalism, theft and fights among students—further reflects an accelerating need for security and surveillance systems on campuses.

Integration Opportunity

IP networking drives all kinds of systems for various uses on campuses and presents an opportunity to expand the effects of integrating security and other systems. Today, college classrooms often are integrated with networked audiovisual systems that also tie into the university’s IT backbone. The connectivity and functionality of these systems also enable them to play a role in security and emergency response, in addition to their everyday functions.

An integrated audiovisual system is part of the new technologydriven classroom environment. Intelligent solutions can integrate video, computers, projectors, whiteboards and handheld tablets, along with a wireless audio system. Beyond the educational benefits of such systems, they can be helpful in case of an emergency situation or an outbreak of violence.

Cutting-edge technology is helping meet challenges brought on by system components spread across large areas and is enabling IP-based surveillance systems to become an even more integral part of campus life.

For example, a wireless classroom audio system could double as an element of an emergency response system. Infrared technology- based audio systems help teachers and students communicate better and can include the use of a wireless pendant microphone worn by the teacher that sends a signal to infrared receivers connected to speakers to amplify the sound of the teacher’s voice. In case of an emergency, the audio system works in tandem with an integrated document camera to allow a teacher to quietly initiate an immediate first response.

The document camera is primarily used to capture images of books, maps or other teaching materials and project them on a screen in the classroom. A network document camera, similar to the video cameras used for surveillance, provides exceptional images in virtually any lighting condition. In case of an incident or an emergency, the teacher can press a panic button located on the pendant microphone. This sends a signal to automatically reposition the document camera to focus not on a book or map but on the classroom as a whole. In effect, the document camera instantly becomes a video surveillance camera, and video is incorporated into the school’s networked surveillance system to provide visual information about an unfolding event. Pressing the panic button also sends an immediate alarm to authorities, enabling immediate response and action to secure the campus, if needed.

Application Challenges

The campus surveillance environment does present a number of application challenges. Among them is the question of how to maintain and support surveillance systems, given that system components are spread across a large area. Cutting-edge technology is helping meet all these challenges and is enabling IP-based surveillance systems to become an even more integral part of campus life.

Outdoor applications. Cameras must be able to withstand environmental elements and continue to operate. Outdoor cameras should meet international IP66 standards for dust and moisture resistance in order to be installed under building eaves or in other environments subject to wind and rain. A dehumidification device and/or a heater can be used to offset extreme operating conditions.

Threat of vandalism. Cameras must be able to stand up to abuse, vandalism and other rough treatment. Engineering and design features, and use of special materials, enable cameras to continue operating even after shocks and impacts that would disable a conventional camera.

Camera coverage for large areas. Using fewer cameras to cover a larger area can help to keep system costs low, and megapixel technology now makes this possible. High-resolution images enable operators to zoom in on an image to see greater detail, such as a vehicle license plate, even on recorded video. Operators can direct PTZ cameras to cover larger areas, and some PTZ cameras automatically pan and tilt to follow a moving subject, keeping it in the center of the image. PTZ cameras also can be programmed to present a sequence of pre-programmed views and/or to move to a specific position in response to an alarm.

Image quality. Identifying faces is important in the campus surveillance environment, so image quality is paramount. Resolution is one factor in quality, and intelligence inside the camera works together with megapixel sensors to further improve images. For example, image processing technology can transform dark areas into natural, high-contrast images such as those seen by the human eye. Adaptive digital noise reduction takes care of the “noise” in a camera image, a process that is especially useful for clarifying images of moving objects.

Lighting. Cameras can help to offset the challenge presented by variable lighting in campus environments. Cameras must be able to capture important details even when an image is backlit. Image processing manages the dynamic range of a video image, which is the span of gradations from the lightest to the darkest areas. Intelligence inside the camera uses natural-contrast image correction to optimize contrast of each pixel and to faithfully reproduce objects in any area and position. The result is better images despite extreme lighting conditions. Day/night cameras also enable 24/7 coverage across the campus.

System costs and preserving previous investment. Campuses that have existing analog security systems often want to preserve that investment as they transition to IP video. Video encoders provide the critical technology link between a legacy analog system and a new IP system. Strategic use of encoders can provide a seamless migration path to connect older systems with newer technologies, while preserving the value of existing resources and incorporating them into a modern networked system. Advanced encoders may include intelligent features such as face detection, H.264 highprofile format transmission and video motion detection. There also are numerous other solutions on the market that enable use of existing infrastructure.

Keeping Systems Humming

In the campus environment, system components can be located far from the central control room. Although components may be out of sight, system operators should create a plan to keep all system components working dependably and efficiently. Ongoing system oversight should include verifying that cameras are functioning properly and that all features are functioning at their full capability. Regular troubleshooting and updates to the network along with your cameras and recorders will ensure you get top performance and the best possible ROI from your entire system.

Take a Wider View

A broader mindset enables campuses to leverage multiple technologies to improve security and to use security systems to enhance non-security functions. Taking a wider view can maximize the benefits of modern technology and make it easier to cost-justify technology investments.

 

This article originally appeared in the July 2011 issue of Security Today.

Featured

  • Analysis of AI Tools Shows 85 Percent Have Been Breached

    AI tools are becoming essential to modern work, but their fast, unmonitored adoption is creating a new kind of security risk. Recent surveys reveal a clear trend – employees are rapidly adopting consumer-facing AI tools without employer approval, IT oversight, or any clear security policies. According to Cybernews Business Digital Index, nearly 90% of analyzed AI tools have been exposed to data breaches, putting businesses at severe risk. Read Now

  • Software Vulnerabilities Surged 61 Percent in 2024, According to New Report

    Action1, a provider of autonomous endpoint management (AEM) solutions, today released its 2025 Software Vulnerability Ratings Report, revealing a 61% year-over-year surge in discovered software vulnerabilities and a 96% spike in exploited vulnerabilities throughout 2024, amid an increasingly aggressive threat landscape. Read Now

  • Evolving Cybersecurity Strategies: Uniting Human Risk Management and Security Awareness Training

    Organizations are increasingly turning their attention to human-focused security approaches, as two out of three (68%) cybersecurity incidents involve people. Threat actors are shifting from targeting networks and systems to hacking humans via social engineering methods, living off human errors as their most prevalent attack vector. Whether manipulated or not, human cyber behavior is leveraged to gain backdoor access into systems. This mainly results from a lack of employee training and awareness about evolving attack techniques employed by malign actors. Read Now

  • Report: 1 in 3 Easily Exploitable Vulnerabilities Found on Cloud Assets

    CyCognito recently released new research highlighting critical security vulnerabilities across cloud-hosted assets, revealing that one in three easily exploitable vulnerabilities or misconfigurations are found on cloud assets. As organizations increasingly shift to multi-cloud strategies, the findings underscore significant security gaps that could provide attackers with potential footholds into networks. Read Now

  • Built for Today, Ready for Tomorrow

    Selecting the right VMS is critical for any organization that depends on video surveillance to ensure safety, security and operational efficiency. While many organizations focus on immediate needs such as budget and deployment size, let us review some of the long-term considerations that can significantly impact a VMS's utility and flexibility. Read Now

New Products

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.