Wireless for Utilities

IP network destined to connect smart appliances to home or office

Utilities and governments around the world are investing billions of dollars into upgrading the existing analog electric, gas and water grids into two-way communication networks capable of optimizing distribution and reducing costs for consumers. The long-term objective is a sustainable and affordable fruition of energy, gas and water.

The key component of all smart grid initiatives is a pervasive IPnetwork to connect smart appliances and meters in homes and offices with electricity producers. Thanks to this network, the usage patterns of each resource can be optimized based on its availability on the grid.

A smart grid network can usually be broken down into three parts: the home area network (HAN), the meter area network and the metro/wide area network (M/WAN). HAN is the network in the home usually created between all the smart appliances using Zigbee or similar technologies. HAN connects all the appliances to a smart meter. The meter area network connects a certain amount of meters to a substation, thus gathering information from multiple houses. Most of the time, it covers a few city blocks. Finally, the M/WAN is the network that connects substations, as well as distributed generators, synchrophasors and transformers to the grid.

M/WAN connects multiple meter area networks together, and the meter area network connects multiple HANs together.

The advantage of using wireless technology for creating a smart grid how easily and quickly it can be installed. Given the brutal costs of running fiber, wireless is, for most cities, the only viable solution to upgrade their grid. In the realm of the wireless world, mesh networks have established themselves as the leader in the smart grid space, for they offer a lot of flexibility in the deployment, as well as an additional level of reliability. Zigbee, a type of mesh network, has now become the leader of HAN while 900 MHz and 5.8 GHz mesh networks own the meter area network and M/WAN covers longer distances and provides more throughput.

From a frequency standpoint, the meter area network is usually at 900 MHz because line of sight is often impossible to achieve. In the M/WAN, mesh networks usually operate on the 5 GHz band—the best tradeoff between data rate and cost.

5 GHz mesh has become the leading technology for meter and M/WAN due to its flexibility and the lack of a single point of failure. With meters spread across a city, it is impossible to be able to stick to a specific network topology such as point-to-point or pointto- multipoint.

In addition, networks tend to grow and change in topology over time, making it even harder to stick to a certain type of network over the life of the system. Mesh networks do solve the problem, providing unlimited flexibility in the deployment. It is also worth noting that using a mesh network on the 900 MHz and 5 GHz range offers the best compromise in terms of performance and price and is totally capable of addressing the connectivity need of many utilities out there.

Today’s mesh networks have improved substantially in terms of reliability and ease of use, making them an even better solution for these types of applications. First of all, the most advanced radios come with an integrated antenna, making them much easier to install and to service. This also makes them much smaller or more powerful because there is no need for external antenna cables, surge suppressors or grounding wires. In addition, many mesh radios used for backhauling are switching to directional antennas—the best way to guarantee throughput and cover long distances up to 15 miles, or even more. They also make the network less sensitive to interferences, leading to a reliable solution. This aspect is particularly important for utilities because the distances are long and the data throughput might be substantial given the large number of devices on the network.

The applications for wireless in a utility are numerous, but when it comes to smart grids they are mainly automatic meter reading (AMR), substation automation and distribution automation. Without getting too much into the details, the goal of the network is to provide live information on the performances of the grid without having to send people around reading meters. This applies to power utilities as well as water utilities.

In fact, both of them have a need to gather data from their devices live at any point in time so they can act on it and become more efficient. The overall result is a more cost-effective solution for the customers and a reduced amount of wasted energy.

Wireless has also helped many utilities to deploy video surveillance cameras in remote areas where there is no fiber available. Given the amount of throughput now available on license-free wireless networks, many utilities are deploying video surveillance cameras to monitor their assets and protect their properties. Thanks to new developments in radio technology such as MIMO and in video compression, we are now able to easily send high-definition video from multiple cameras across one single wireless link. In addition, using wireless allows many utilities to change the location of their cameras more easily during the life of the system, guaranteeing they will always be monitoring what matters the most to them. This clearly opens up a whole new world of opportunities for many utilities that, until a few years back, were still struggling with analog communication.

Wireless also is deployed in a utility to provide broadband connectivity to different buildings and create an enterprise network between their properties. Although this is probably the least innovative of the applications, it still solves a major connectivity problem that affects many utilities trying to provide better tracking of their assets.

This article originally appeared in the December 2012 issue of Security Today.

Featured

  • 2025 Security LeadHER Conference Program Announced

    ASIS International and the Security Industry Association (SIA) – the leading membership associations for the security industry – have announced details for the 2025 Security LeadHER conference, a special event dedicated to advancing, connecting and empowering women in the security profession. The third annual Security LeadHER conference will be held Monday, June 9 – Tuesday, June 10, 2025, at the Detroit Marriott Renaissance Center in Detroit, Michigan. This carefully crafted program represents a comprehensive professional development opportunity for women in security this year. To view the full lineup at this year’s event, please visit securityleadher.org. Read Now

    • Industry Events
  • Report: 82 Percent of Phishing Emails Used AI

    KnowBe4, the world-renowned cybersecurity platform that comprehensively addresses human risk management, today launched its Phishing Threat Trend Report, detailing key trends, new data, and threat intelligence insights surrounding phishing threats targeting organizations at the start of 2025. Read Now

  • NRF Supports Federal Bill to Thwart Retail Crime

    The National Retail Federation recently announced its support for the Combating Organized Retail Crime Act of 2025. The act was introduced by Chairman Chuck Grassley, R-Iowa, Senator Catherine Cortez Masto, D-Nev., and Representative Dave Joyce, R-Ohio. Read Now

  • ISC West 2025 Brings Almost 29,000 Industry Professionals to Las Vegas

    ISC West 2025, organized by RX and in collaboration with the Security Industry Association, concluded at the Venetian Expo in Las Vegas last week. The nation’s leading comprehensive and converged security event attracted nearly 29,000 industry professionals and left a lasting impression on the global security community. Over five action-packed days, ISC West welcomed more than 19,000 attendees and featured 750 exhibiting brands. Read Now

    • Industry Events
    • ISC West
  • Tradeshow Work Can Be Fun

    While at ISC West last week, I ran into numerous friends and associates all of which was a pleasant experience. The first question always seemed to be, “How many does this make for you?” Read Now

    • Industry Events
    • ISC West

New Products

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.