Wrightstyle

Hospital Fire Safety in the USA

They are places of safety for newborns or elderly, and everyone in between. It’s why fire safety in healthcare facilities is so stringent and rigorously enforced.

They are places of safety for newborns or elderly, and everyone in between.  It’s why fire safety in healthcare facilities is so stringent and rigorously enforced. Safety regulations require fire risk assessments, fire safety policies and an operational strategy for implementing them––including rehearsed plans for the safe evacuation of patients, staff and visitors. That initial assessment starts with a close examination of the possible risks against hospitals’ occupants, structure, resources and continuity of operations, and there are a number of assessment methodologies to understand the potential threats, identify the assets to be protected, and how best to mitigate against risk.

Design teams take a multi-disciplinary approach to assessing hazards––from power failure to cyber attack, from civil disorder to fire and explosive detonation––and arrive at risk assessments that, hopefully, illuminate how that building should be designed, built and safely operated. But, the size and complexity of modern hospitals means that the risk of fire cannot be entirely avoided.  What’s important is that it is detected quickly, contained and then dealt with.

The history of fire safety in hospitals and elsewhere, in the USA and internationally, has been about “codifying by catastrophe”––only improving regulations once a fatal fire has taken place. 

The most significant fire, in terms of new regulation, was the St Anthony’s Hospital disaster in Effingham, Illinois in 1949, which killed over 70 people, including 11 newborn babies.

From that disaster came regulations on flame-retardant materials and effective barriers to contain fires at the source, and a new recognition that containment was an integral part in minimizing fire risk.

Fire regulations were again tightened following a 1961 hospital fire in Hartford, Connecticut, which was caused by a discarded cigarette that was dropped down a trash chute and 16 people died.  Other changes to regulation were new rules on smoking on healthcare premises, and further requirements on fire-retardant materials, including wallpaper and ceiling tiles were instated.

Underlining the importance of containment, an intern at the hospital said that those who lived had the doors to their rooms closed.  Those who died had their doors open.

However, the deadliest hospital fire in the U.S. took place at the Cleveland Clinic in May 1929 when over 120 people died, caused by nitrocellulose x-ray film being exposed to the heat of a light bulb.  This caused explosions and the creation of poisonous gas.

Following this, again codifying by catastrophe, Cleveland issued all fire fighters with gas masks and, nationally, new standards were introduced for the storage of hazardous materials, including x-ray film.

Among other tragedies was a 1950 fire at Mercy Hospital, Iowa, a unit for mental patients.  The fire, again perhaps caused by a discarded cigarette, claimed some 40 lives, and was able to spread rapidly in an old building.  Containment, again.

Although many lessons have been learned over the years, not all of them have been implemented in other parts of the world.  In a hospital fire in Russia last year, nearly 40 people died––in a wooden building that had been previously ordered to close because of fire safety concerns. A further 38 died last year in a separate hospital fire near Moscow.

They are places of safety for newborns or elderly, and everyone in between.  It’s why fire safety in healthcare facilities is so stringent and rigorously enforced. Most fires start with the smallest of incidents––commonly, a dropped cigarette or electrical short-circuit.  Others have a more bizarre cause; for example, an operating theatre at Ashford Hospital, England, had to be temporarily closed last year because a member of staff overcooked food in a microwave oven, filling corridors with smoke.

But, if a fire does break out, it needs to be suppressed––with a sprinkler system, for example––and contained, which is where specialist glazing systems have an important role to play. These systems can contain a fire for up to 120 minutes––long enough for safe evacuation and emergency response.

In a hospital environment, where ambient light has an important influence on staff morale and patient recovery, glazing systems can have both a functional and aesthetic purpose: helping in the recovery process and, if a fire breaks out, ensuring that it is contained at source.

Featured

  • Tradeshow Work Can Be Fun

    While at ISC West last week, I ran into numerous friends and associates all of which was a pleasant experience. The first question always seemed to be, “How many does this make for you?” Read Now

    • Industry Events
    • ISC West
  • New Report Says 1 in 5 SMBs Would Be Forced to Shutter After Successful Cyberattack

    Small and medium-sized businesses (SMBs) play a crucial role in the U.S. economy, making up 99.9% of all businesses and contributing to half of the nation's GDP. However, these vital economic growth drivers face an escalating threat—cyberattacks that could put them out of business. Read Now

  • The Yellow Brick Road

    The road to and throughout Wednesday's and Thursday's ISC West was crowded but it was amazing. Read Now

    • Industry Events
    • ISC West
  • An Inside Look From Napco at ISC West

    Get a look into the excitement at ISC West 2025 from Napco. Hear from some of their top-tech executives live from the show floor. Read Now

    • Industry Events
    • ISC West
  • Upping the Ante

    I am not a betting man in terms of cards, dice, blackjack or that wheel with the black marble racing around the circumference of a spinning wheel, but I would bet on the success of ISC West this year. Read Now

    • Industry Events
    • ISC West

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles.