On a Clear Path

Plan on significant storage capabilities to handle bandwidth

For those looking for a defined migration strategy to network video, the path can appear muddled. Today, there are countless manufacturers that claim to have a clear migration path toward an open architecture platform; however, there is simply no clear path that applies to all applications.

Even though organizations, such as ONVIF, are working toward industry standards, the lack of interoperability in many video system products is a serious concern for planners and integrators. This is especially true when it comes to mission-critical functions. Supporting high-resolution cameras from multiple manufactures requires significant storage and server capabilities to handle the increased bandwidth.

Purpose-built, Video-optimized Servers

When designing or migrating toward a new IP-based physical security solution, it is imperative to use a server and storage solution that is purpose-built and optimized for video applications. A best-practice video server demands mission-critical quality drives with high I/O capabilities and unconstrained workload capacity. Server configuration is vital and should include memory, storage and processor specifications that ensure optimum scalability for video. Video servers should have the capacity to accommodate future growth, including the ability to record higher resolutions and higher frame rates without dropping frames as well as cost-effectively store video data for longer periods of time.

In 2010, before the heavy influence of high-megapixel cameras, the introduction of 6G SAS drive technology into the video market offered significant system advantages over historical SATA drives. These bi-directional drives provide two redundant paths to every hard drive for increased availability and reliability in case of a single-path failure.

The high I/O workload of network cameras can constantly inundate servers, as client workstations on the other end simultaneously attempt to pull video for review. Both slower speed and SATA drives can cause significant bandwidth issues directly due to the buffering that is required with single channel data transfer. This lag can result in dropped or frozen frames, video artifacting and a number of other issues.

Mission-critical IP video applications require greater protection than typical, off-the-shelf IT data servers, regardless of size and scope. Therefore, the importance of using 6G SAS drive technology in IP-based physical security solutions cannot be understated.

Types of Storage Technology

Storage of video in a typical network video solution can be an immense proposition. It could entail potentially hundreds of high-resolution cameras capturing as many as thirty frames-per-second, operating 24x7 for a month or up to a few years. The most common mistake made is to categorize streaming video as just another form of data. The case for purpose-built video storage over traditional data solutions focuses on five key areas: massive database size needs, I/O-intensive operations, intolerances of system latencies, constant bit-rate streaming and demanding operating environments, such as temperature, vibration and bit-error rate. Because of the intrinsic nature of streaming video, each of these five areas requires a purpose-built approach that takes into account unique needs, capabilities and system demands. Three main storage technologies that are typically used in the IP video market include:

Internal storage. This technology records the video to the internal drives within the server. The logistics of having the drives inside the main CPU dictates no faster throughput for video data. These drives should be protected by RAID 5 or 6, ensuring that if a drive was to fail, no data would be lost. Today’s scalable servers can house up to 240TB, all internal to the server, in as little as 5U of rack space.

Using internal storage is the most popular, as it offers the best performance at the best price point. Video recorders should run in a single-application environment—that application being, recording the video. Today’s enterprise-grade IP video servers eliminate the expense and potential risk of running archive video over a virtualized solution in a shared environment.

Directed attached storage (DAS). This high-end technology is used when there is not enough drive space available within the server chassis. Because of its multi-lane SAS connection to the server, DAS performs almost identically to the internal storage. These drives should be protected by RAID 5 or 6, ensuring that if a drive was to fail that no data would be lost. DAS can be scaled up to 1680TB from a single server using as little as 22 rack spaces.

More importantly, properly-optimized DAS solutions can manage more than 1,000MBit/s of video ingestion. With the properly-built DAS, latency is reduced as data does not travel over large distances. Today’s DAS technology allows a security integrator to map cameras to one single drive partition instead of having to split the loads via a number of partitions.

Centralized storage (iSCSI). This technology is used when the end user would like to store video in a central location. iSCSI allows for multiple servers to send their video data across the network to a centralized storage array.

This storage technology, although popular in the IT world, is not as effective in the video world. This is due to other considerations that need to be addressed in order for the solution to properly work. The iSCSI storage device is only as fast as the network to which it is attached, regardless of SATA or 6G SAS drives installed. Once through the network, the 6G SAS drives will outperform the SATA drives, similar to within the internal server.

The storage array design must take into consideration the potentially large amount of data that could be streaming from multiple video servers. It is crucial that the storage array ingests the total bandwidth from all the servers simultaneously without bottlenecking.

The iSCSI storage solution can no longer be considered as a Just a Box of Disks (JBOD) device. More than ever, today’s video applications depend on these units having enterprise-server standards such as health monitoring, storage controller clustering, mirrored OS disks, redundant fans and power, and advanced memory protection.

Read the Fine Print: What is the Warranty?

Warranty seems to be a lot like an opinion, everyone seems to have one. Unfortunately, warranty needs to be based more on fact than opinion. It is important for the integrator to check those facts during the purchase decision. If the video recorder is down, the cameras aren’t recording. Suffice to say, the constant recording of the video is the key element of the project. Consider that the security integrator is generally on the hook for the three-tofive years of a security project, and yet, the warranty tends to get overlooked, until it is too late.

Determine the facts up front:

  • Is the entire video recorder under one on-site agreement or are some or all internal parts—even critical parts such as the hard drives – not covered? If so, who is servicing those?
  • Are they on a mail-in warranty or perhaps they are advance exchange?
  • Are the replacement drives sent overnight, or do you pay the additional freight to get them the next day?
  • When the drive does arrive, are you then the on-site tech or does the server company dispatch someone at their expense?
  • What value do you put on your manpower if your company needs to go on-site and follow-up on a service call?
  • Can you afford two service calls if you need to pull a drive today and then come back tomorrow or the next day to install the new one?
  • What is the integrator and end-customer cost for processing an RMA versus a product that needs no RMA?
  • What is the potential financial impact of the down customer as it relates to future opportunities or your company’s reputation? Did your upfront system savings become a distant memory? Have you subjected your customer to liabilities due to missing critical footage?

Seems the integrator has enough on their plate without having to walk through the warranty maze. As much as server manufacturers strive for the utopia of 100 percent up time, things happen that require immediacy and stability—without guesswork or added costs to their bottom line. Today’s enterprise-grade video recorders offer active health features which continually monitor the system status. Proactive alerts of potential failures will be sent before they occur. This allows the project server virtually zero down time throughout the length of the project and thereafter.

Regardless of the brand, the integrator should ensure the entire video recorder is covered by a full-system, on-site warranty, both inside and out. Otherwise, an integrator is buying five years of expense and risk.

This article originally appeared in the November 2014 issue of Security Today.

Featured

  • Live From ISC West: Day 2 Recap

    If it’s even possible, Day 2 of ISC West in Las Vegas, Nevada, was even busier than the first. Remember to keep tabs on our Live From ISC West page for news and updates from the show floor at the Venetian, because there’s more news coming out than anyone could be expected to keep track of. Our Live From sponsors—NAPCO Security, Alibi Security, Vistacom, RGB Spectrum, and DoorKing—kept the momentum from Day 1 going with packed booths, happy hours, giveaways, product demonstrations, and more. Read Now

    • Industry Events
    • ISC West
  • Visiting Sin City

    I’m a recovering alcoholic, ten years sober this June. I almost wrote “recovered alcoholic,” because it’s a problem I’ve long since put to bed in every practical sense. But anyone who’s dealt with addiction knows that that part of your brain never goes away. You just learn to tell the difference between that insidious voice in your head and your actual internal monologue, and you get better at telling the other guy to shut up. Read Now

  • On My Way Out the Door

    To answer that one question I always get, at every booth visit, I have seen amazing product technology, solutions and above all else, the people that make it all work. Read Now

    • Industry Events
    • ISC West
  • Return to Form

    My first security trade show was in 2021. At the time, I was awed by the sheer magnitude of the event and the spectacle of products on display. But this was the first major trade show coming out of the pandemic, and the only commentary I heard was how low the attendance was. Two representatives from one booth even spent the last morning playing catch in the aisle with their giveaway stress balls. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

New Products

  • PDK IO Access Control Software

    PDK.IO Access Control Software

    ProdataKey now allows for "custom fields" within the interface of its pdk.io software. Custom fields increase PDK's solutions' overall functionality by allowing administrators to include a wide range of pertinent data associated with each user. 3

  • Tyco Kantech EntraPass security management software

    Tyco Kantech EntraPass security management software

    Johnson Controls, the global leader in smart, healthy and sustainable buildings, and architect of the Open Blue digital connected platforms, has released the newest version of the Tyco Kantech EntraPass security management software. 3

  • Unique Oversized ID Card Printer

    Unique Oversized ID Card Printer

    Idesco Corp. is announcing its card printer – the XCR100 2.0 printer- that allows customers to personalize oversized ID cards on demand. The printer is ideal for assisting healthcare organizations find the right badging solution. As healthcare facilities continue to combat the spread of COVID-19, issuing oversized ID cards has helped identify staff clearly while adding an extra layer of security. The XCR100 2.0 printer is the only dye-sublimation printer on the market that can personalize CR100 cards (3.88" x 2.63"). The cards that are 42% larger than the standard credit card size. The printer can produce up to 180 full cards per hour in color, and up to 1,400 cards per hour in monochrome. An optional flipper is available to print dual-sided badges in one pass. Contactless encoding comes as an option to help healthcare facilities produce secure access badges on demand and the card printer features a 2-year warranty. 3