Clustering Attacks on Web Apps to Find the Real Story Behind the Headlines

Clustering Attacks on Web Apps to Find the Real Story Behind the Headlines

Our goal of clustering attacks on web applications is two-fold

Security products which aim to block attacks may do their job perfectly while also reporting the attacks that are blocked. However, one of the biggest problems in the cyber security arena today is alert fatigue, where there are too many alerts to manually process. The largest data breach in history  affecting more than 41 million customer payment card accounts could have been prevented if the right action from the visible security alerts were taken. A web site protected by a web application firewall may be targeted by anywhere from hundreds of thousands of attacks to millions of attacks in a single day.

The amount of manpower given for processing and analyzing these alerts is always not enough, and the result is a flood of important data which is not handled and analyzed due to the alert fatigue. However, by leveraging artificial intelligence, we can develop sophisticated machine learning algorithms to cluster alerts to automate and consolidate those alerts, condensing days or weeks of work into minutes.

Our goal of clustering attacks on web applications is two-fold:

  1. Highlight interesting patterns inside the attacks
  2. Distill the massive amount of attacks to a few actionable incidents

Clustering can help us create a “story” out of the attacks (naming them based on behavior), making them more easily understood to a human observer and easier to analyze. For example, when seeing a cluster called, “SQL injection attack from several IPs in China using a Havij scanner,” the story behind it is much clearer than analyzing the thousands of attacks this cluster contains and trying to find the common pattern between them.

A simple “group-by” algorithm that takes the alerts and groups them by a specific attribute is not good enough. The reason is that there is not a single structure for attacks, and there is no single attribute which can define all the attacks. Thus, a more sophisticated algorithm, which considers a general distance function between attacks on web applications, is needed.

The algorithm has three main stages:

  1. Feature extraction
  2. Distance calculation
  3. Clustering of the attacks

Feature extraction

The raw data that enters the algorithm is an HTTP request that contains an attack stopped by the firewall, with some additional fields containing more data about the attack, like the source IP and the type of attack.

By leveraging our web application security domain knowledge, we extract additional meaningful features from the raw data that can help us describe the attack.

For example, the source of an attack is not defined solely by the IP. We also use geolocation services to extract more the about the origin of the IP, like source country, ISP, coordinates, ASN etc. It is also useful to know whether this IP comes from some kind of anonymity framework like TOR or an anonymous proxy.

Distance Calculations

The next task is to determine a way to calculate the distance between two attacks. This is a core stage of the algorithm as it determines when two attacks are similar, which in general is what the algorithm is trying to achieve. Calculating a distance between two points in the plane is easy – there is a precise formula to do it – but how can we calculate the distance between two URLs or two IPs?

We need to find a method to calculate the distance for every meaningful feature we have in our data, and then combine all these distances to find a single measure between two attacks.

Clustering of the Attacks

The final step is to take the data with all the extracted features and the distance measure between attacks to construct clusters of the attacks. In our case, we used a streaming clustering algorithm. This algorithm creates the clusters over time by receiving a stream of data as more and more attacks enter the system.

The importance of clustering in streaming mode is that the attacks are being delivered in real time. This method of stream clustering helps the performance of the algorithms in both time and memory, as not all the attack data is stored in memory all the time, only the current clusters with their unique features.

To conclude, clustering attacks on web applications help to understand the hidden patterns behind the attacks and to make huge amounts of data comprehendible to the human security expert. Constructing such a clustering algorithm requires more than just machine learning knowledge, it requires a high level of domain knowledge in cyber security to understand and construct the various parts of the algorithm.

To read more about clustering of attack on web applications see Imperva’s blog series.

Featured

  • AI Is Now the Leading Cybersecurity Concern for Security, IT Leaders

    Arctic Wolf recently published findings from its State of Cybersecurity: 2025 Trends Report, offering insights from a global survey of more than 1,200 senior IT and cybersecurity decision-makers across 15 countries. Conducted by Sapio Research, the report captures the realities, risks, and readiness strategies shaping the modern security landscape. Read Now

  • Analysis of AI Tools Shows 85 Percent Have Been Breached

    AI tools are becoming essential to modern work, but their fast, unmonitored adoption is creating a new kind of security risk. Recent surveys reveal a clear trend – employees are rapidly adopting consumer-facing AI tools without employer approval, IT oversight, or any clear security policies. According to Cybernews Business Digital Index, nearly 90% of analyzed AI tools have been exposed to data breaches, putting businesses at severe risk. Read Now

  • Software Vulnerabilities Surged 61 Percent in 2024, According to New Report

    Action1, a provider of autonomous endpoint management (AEM) solutions, today released its 2025 Software Vulnerability Ratings Report, revealing a 61% year-over-year surge in discovered software vulnerabilities and a 96% spike in exploited vulnerabilities throughout 2024, amid an increasingly aggressive threat landscape. Read Now

  • Motorola Solutions Named Official Safety Technology Supplier of the Ryder Cup through 2027

    Motorola Solutions has today been named the Official Safety Technology Supplier of the 2025 and 2027 Ryder Cup, professional golf’s renowned biennial team competition between the United States and Europe. Read Now

  • Evolving Cybersecurity Strategies

    Organizations are increasingly turning their attention to human-focused security approaches, as two out of three (68%) cybersecurity incidents involve people. Threat actors are shifting from targeting networks and systems to hacking humans via social engineering methods, living off human errors as their most prevalent attack vector. Whether manipulated or not, human cyber behavior is leveraged to gain backdoor access into systems. This mainly results from a lack of employee training and awareness about evolving attack techniques employed by malign actors. Read Now

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.