Smart City Technologies

Smart City Technologies

How solutions are deployed to ensure safety and security at the border

Two of the biggest trends today, particularly in the security surveillance and IoT realms, are border security and the emergence of local governments transforming their communities into smart cities. On the surface, these two may seem to have little, if anything, in common. But that isn’t necessarily the case.

National Security or Humanitarian

Border security can be seen as a humanitarian issue, a national security issue or even a combination of the two. Regardless of how you balance your viewpoint, border security is certainly important to countries and their citizens. Without a doubt, there is heightened public awareness about securing national borders around the world.

Within smart cities, there are a number of initiatives that can be undertaken to address the challenges facing a particular community. For some people, the most important aspect of smart cities is a comprehensive energy plan. For others, it’s public safety. Still others see a shared services hub, enabling bi-directional exchange of data and information between citizens and departments of public services, as the most crucial part of a smart city. These are just a few of the many sub-segments that can make up a smart city. With the increasing number of devices and systems that can be integrated and interconnected, the size and scope of smart city applications is seemingly only limited by the imagination, ingenuity, and, oh yeah, the budget and/or available funding.

Based on these descriptions, it may be hard to imagine where, if at all, the two worlds of border security and smart cities would intersect. Upon closer examination, however, there are similarities in some of the technologies and systems that are used for each of these applications. So, while the actual use cases and applications of the technology may vary, they are more similar in function than they appear at first glance.

The Department of Homeland Security (DHS) Digital Video Quality Handbook recognizes three primary categories for video analytics: real-time situational awareness and incident response, non-real-time forensic analysis/digital media content search, and business intelligence. For our purposes, we will examine the first and third of these.

Real-Time Situational Awareness and Incident Response

In border security, real-time situational awareness can be used with perimeter detection analytics to notify an operator if an area has been breached or if there are people in an established sterile zone where no one is permitted.

From a smart city standpoint, this situational awareness could be provided by anything from video analytics that recognize anomalies in patterns of crowd gathering or flow to audio analytics that detect things such as gunshots or vehicular accidents. It could also include environmental alerts such as flood detection, or anything else that classifies as an event and raises operator awareness.

As important as detection analytic technology may be in both use cases, of equal importance is the process that flows behind it for the validation of, and the response to, detected events. To be a true “solution,” situational awareness analytics must be supported by pre-determined, and periodically practiced, validation and planned response procedures.

Business Intelligence

Retailers have long employed analytics to help improve their business. Using analytics to gather data, retailers can learn how people move throughout their stores and how long they wait in line to check out, among other factors. When the data is presented in graphical form, intelligence is gained which allows them to make actionable decisions regarding merchandising, staffing and optimizing their floor space to create the best possible experience for their customers.

There is great potential for these types of “business intelligence” analytics both in border security and smart cities. Stakeholders involved in both use cases can use various IoT sensors to acquire data, therein enabling officials to recognize trends, build effective processes and ultimately make informed data-driven decisions.

Along a border, officials might use this information to know how seasonal patterns and weather changes affect which paths are taken by individuals crossing a border. This allows them to make predictive decisions about where to position agents to produce desired results.

A smart city could deploy similar technologies to collect data that will help make decisions for traffic and urban planning. For example, to promote multimodal mobility, would it be beneficial to build a walkway over a street rather than having pedestrians cross at street level, and where would it be best located? Additionally, data about the number and types of vehicles traveling along a corridor could be used to determine if lane accommodations need to be changed to improve traffic flow. Transportation agencies have collected this data via manual processes for years, but IoT and the emergence of analytics now allow them to automate the process.

While the data may drive completely different decisions, the data is converted to intelligence in both cases, justifying decisions that increase efficiency and drive better results.


In addition to the variety of analytics that provide real-time and business intelligence, a third key area where similarities exist between border security and smart cities is lighting. Before delving into lighting itself, it’s important to note that a primary challenge with the proliferation and mass deployment of the Internet of Things (IoT) is finding the infrastructure to both power sensors and to then move data from the devices. Wireless technology can accommodate data movement in some cases, but power challenges cannot be overcome as easily without hard-wired infrastructure.

This is where lighting comes in. Light poles can provide the necessary power infrastructure and vertical real estate to accommodate these devices and sensors, many of which will be used to drive the analytics that will provide valuable intelligence.

Lighting is a critical aspect not only of security in both border and smart city applications, but it also offers a high aesthetic value, particularly in urban areas. The trend to upgrade aging lighting fixtures from high intensity discharge (HID) lamps, to state-of-the-art light emitting diode (LED) luminaires, provides gains in power efficiency, improved color rendering index from the light source, and an ideal opportunity to deploy IoT sensors in conjunction with lighting upgrades.

This potentially creates a network of “smart poles” that allow sensors and communications antennae to be mounted at a height that avoids common attempts of vandalism and provides open line-of-sight between wireless communication antennae in most environments. The poles are also potentially at a height that is more likely to be a safe and healthy distance from radio frequency (RF) exposure—though there is lots of debate regarding this, particularly in the telecommunications and in the health and safety fields.

In both border security and smart cities, we’re seeing greater use of these smart poles, which offer the mounting real estate and infrastructure to deploy a wide variety of technologies and devices— everything from servers and processing hardware to public Wi-Fi radios, LTE, and 5G (emerging) technology accommodations. Those emerging technologies have use cases such as environmental sensing, audio analysis, traffic, mobility, security and public safety.

And from a funding standpoint, because LEDs use less power than HIDs, the resulting cost savings can be used to justify capital expenditures on these other technologies that will enhance both border security and smart city applications.

Although the use cases and desired results in border security and in smart city applications seem worlds apart, the integration skillsets, disciplines and technologies deployed can actually be quite similar. By updating networks with IoT sensors, analytics and LED lighting, positive results can be achieved in both situations.

Based on trends already in motion such as improved capabilities in edge processing, advancements in machine learning-based artificial intelligence applications, and improved performance of wireless networks, we will only see the proliferation of IoT devices continue to accelerate use cases in virtually all vertical segments, including border security and smart cities.

This article originally appeared in the October 2019 issue of Security Today.


  • Live From ISC West 2023: Day 1

    ISC West 2023 in Las Vegas, Nevada, has officially begun! Make sure to keep an eye on Security Today’s ISCW Live 2023 page, as well as our associated Twitter accounts—@SecurToday and @CampusSecur—for the latest updates from the show floor at the Venetian Expo. Read Now

    • Industry Events
    • ISC West
  • It Happened Again

    Just yesterday (as of this writing), it happened again. A 28-year-old woman shot her way into a Christian elementary school in Nashville, Tenn., on Monday and killed three children and three adults, according to national news. AP News reports that the victims were three 9-year-old children, a top school administrator, a substitute teacher, and a school custodian Read Now

  • Let's Get to Work

    You are standing at the conference center doors just waiting to get into the exhibit hall. I know you are because I’m standing next to you. This week at ISC West has been three years in the making. Last year was encouraging, and here we are waiting for the Big Show. Read Now

    • Industry Events
    • ISC West
  • Using Modern Technology

    Using Modern Technology

    Workplace violence is a serious and growing challenge for many organizations — including those in the healthcare industry. Read Now

Featured Cybersecurity

New Products

  • HID Signo Readers

    HID Signo Readers

    HID Global has announced its HID® Signo™ Biometric Reader 25B that is designed to capture and read fingerprints in real-world applications and conditions. 3

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3

  • Dahua 2-Wire IP Video Intercom System

    Dahua 2-Wire IP Video Intercom System

    Dahua Technology is introducing a new line of expandable 2-wire IP video intercom solutions for the North America market. The New 2-wire IP video intercom is more advanced, cost effective, and designed to help businesses increase their security. 3