Prioritizing Vulnerabilities is a Flawed Process: What’s Needed

The topic of zero-day exploits and exposed vulnerabilities is always trending within cybercriminal communities, both on clear web platforms and on the underground. From 280-character tweets circulated among cybercriminals on Twitter, to POC exploits released on clear web code repositories, to exploit kits and tools shared across the forums and markets of the deep and dark web, threat actor discourse revealing which vulnerabilities they plan to target is far from scarce.

Given the increasing number of vulnerabilities discovered and disclosed each year, and the mounting struggles of IT departments as they work to keep legacy systems secure, many organizations do not prioritize patch deployment for ‘low-severity’ CVEs, focusing instead on remediating those that are making headlines or those assigned a ‘high-severity’ Critical Vulnerability Scoring System (CVSS) rating.

Threat actors understand that these ‘medium’ and ‘low’ severity CVEs are likely to remain unpatched and un-remediated within enterprise environments and take advantage of the flawed prioritization process to gain access to critical assets, moving laterally through the network to deploy high-profit, high-impact attacks.

Some of the most widespread and devastating cyberattacks over recent years have originated with the exploitation of vulnerabilities rated ‘medium’ or ‘low’ severity by the CVSS.

The prioritization process is inherently flawed: the CVSS score measures the estimated severity – not risk – of exploitation.

In many cases, timely patch management for CVEs rated at medium or high severity is an issue of compliance, required by industry standards, government agencies or other regulatory bodies such as the Payment Card Industry Data Security Standard (PCI DSS). Predicating the prioritization of patching cycles on CVSS ratings alone is therefore a potentially fatal error, and yet it remains the prevalent methodology for many organizations and vulnerability scanning tools.

Since the standard of Common Vulnerabilities and Exposures (CVE) was first introduced in 1999, almost 200,000 publicly known vulnerabilities have been recorded to date. While many of these vulnerabilities have since been patched (some were patched years, even decades ago), many organizations have not yet applied the available security updates and patches, leaving their systems exposed to cyberattack.

How CVSS Scores are Calculated

Published CVSS scores are typically comprised of a combination of Base Metrics and Temporal Metrics Scores only. While a useful starting point, Base Metrics by definition are static, representing the intrinsic characteristics of a vulnerability that remain constant over time. Once it is published, the score is often not re-evaluated or updated to reflect the current Temporal status.Static scores are not much help in the current, rapidly evolving threat landscape.

CVSS scoring mechanisms have gone through three major revisions (and a number of minor revisions) since the framework was inaugurated in 2005, with CVSS Version 3.1 being the most current revision. According to the National Vulnerability Database (NVD), CVSS Version 3.1 is generated through the measurement of three core metric groups:

(1) Base Score Metrics, which represent the intrinsic and fundamental characteristics of a vulnerability;

(2) Temporal Score Metrics, which represent the current state of exploit techniques or code availability;

(3) Environmental Score Metrics which represent those characteristics of a vulnerability that are relevant and unique according to each individual organizational infrastructure.

How can an organization effectively prioritize their CVE patching cycles if they rely on an outdated severity rating that remains unchanged even after a working exploit kit has been widely distributed within the cybercriminal underground?

As explicitly noted in the CVSS version 3.1 user guide, CVSS measures severity, not risk. Accordingly, insight into threat actor discourse and interest surrounding CVEs and their related attack vectors for exploitation is critical, providing the accuracy, relevance and context needed to effectively prioritize vulnerability remediation processes.

This vulnerability currently has a CVSS 3.1 score of 9.8 – likely flagging it as the highest priority patch for organizations using the software. Though remediation of this CVE is likely to be prioritized quickly, it is important to understand the context of underground threat actor discourse surrounding the exploitation of this vulnerability.

In the image below (CVE-2022-22954) we can see that most of the chatter was observed on social media platforms such as Twitter. However, there are also a significant number of code repository entries of POC exploit codes.

It is also important to note chatter on high-profile underground forums and the extent of actor participation in those discussions. For CVE-2022-22954, chatter surrounding the exploitation of the vulnerability was observed on a notable underground forum as early as 4/12/2022.

A Need to Re-Prioritize

Monitoring underground chatter does more than simply justify what is already set to be prioritized by one’s vulnerability scanner. There are likely multiple vulnerabilities with a CVSS score below 4.0 which would go unflagged by scanners due to their low severity score.

For example, on a well-known Telegram group (Graphic below) dedicated to the discussion of hacking tools and tactics, a message was observed sharing information surrounding the recently publicized CVE-2022-22950 and CVE-2022-22948 vulnerabilities. It’s easy to argue that the discussion of these CVEs on such a prominent cybercriminal channel might encourage threat actors to target these vulnerabilities, regardless of their low-severity CVSS ratings.

Additional chatter was also observed on other cybercriminal Telegram groups associated with notable hacking groups discussing the same CVEs.

Monitoring in Real Time

Vulnerability and exploit chatter is rife across all spectrums of the internet. Yet this intel can be extremely difficult to track without real-time visibility into the primary arena of cybercriminal activity – the deep and dark web – rendering an accurate identification of immediate threats a near insurmountable challenge.

While all vulnerabilities ought to be of some concern, only 6% of CVEs are actually exploited. Without accurate threat intel to provide insight into the risk – rather than severity – of each vulnerability, security teams find themselves fighting an uphill battle, overwhelmed with the sheer volume of vulnerabilities potentially exposing their organization.

Automated threat intelligence helps to separate the wheat from the chaff, by providing the much-needed context to drive informed security decisions, and by helping teams enhance the productivity and efficacy of their patching cycles, without exposing their systems to avoidable risk.

The process for monitoring vulnerabilities in real-time can support the patching cycle process, empowering security teams to prioritize remediation according to accurate threat intelligence regarding the likelihood of a vulnerability exploitation.

Featured

  • Cybersecurity Awareness Month: Top Five Action Items to Elevate Your Data Security Posture Management and Secure Your Data

    October is Cybersecurity Awareness Month, and every year most tips for security hygiene and staying safe have not changed. We’ve seen them all – use strong passwords, deploy multi-factor authentication (MFA), be vigilant to spot phishing attacks, regularly update software and patch your systems. These are great recommended ongoing tips and are as relevant today as they’ve ever been. But times have changed and these best practices can no longer be the bare minimum. Read Now

  • Boosting Safety and Efficiency

    Boosting Safety and Efficiency

    In alignment with the state of Mississippi’s mission of “Empowering Mississippi citizens to stay connected and engaged with their government,” Salient's CompleteView VMS is being installed throughout more than 150 state boards, commissions and agencies in order to ensure safety for thousands of constituents who access state services daily. Read Now

  • Live From GSX: Post-Show Review

    Live From GSX: Post-Show Review

    This year’s Live From GSX program was a rousing success! Again, we’d like to thank our partners, and IPVideo, for working with us and letting us broadcast their solutions to the industry. You can follow our Live From GSX 2023 page to keep up with post-show developments and announcements. And if you’re interested in working with us in 2024, please don’t hesitate to ask about our Live From programs for ISC West in March or next year’s GSX. Read Now

    • Industry Events
    • GSX
  • People Say the Funniest Things

    People Say the Funniest Things

    By all accounts, GSX version 2023 was completely successful. Apparently, there were plenty of mix-ups with the airlines and getting aircraft from the East Coast into Big D. I am all ears when I am in a gathering of people. You never know when a nugget of information might flip out. Read Now

    • Industry Events
    • GSX

Featured Cybersecurity

New Products

  • XS4 Original+

    XS4 Original+

    The SALTO XS4 Original+ design is based on the same proven housing and mechanical mechanisms of the XS4 Original. The XS4 Original+, however, is embedded with SALTO’s BLUEnet real-time functionality and SVN-Flex capability that enables SALTO stand-alone smart XS4 Original+ locks to update user credentials directly at the door. Compatible with the array of SALTO platform solutions including SALTO Space data-on-card, SALTO KS Keys as a Service cloud-based access solution, and SALTO’s JustIn Mobile technology for digital keys. The XS4 Original+ also includes RFID Mifare DESFire, Bluetooth LE and NFC technology functionality. 3

  • ComNet CNGE6FX2TX4PoE

    The ComNet cost-efficient CNGE6FX2TX4PoE is a six-port switch that offers four Gbps TX ports that support the IEEE802.3at standard and provide up to 30 watts of PoE to PDs. It also has a dedicated FX/TX combination port as well as a single FX SFP to act as an additional port or an uplink port, giving the user additional options in managing network traffic. The CNGE6FX2TX4PoE is designed for use in unconditioned environments and typically used in perimeter surveillance. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3