The Next Evolution

Innovation in AI and two-step verification is reducing the labor to monitor cameras - critical as surveillance continues to proliferate

The longstanding practice of watching hundreds and thousands of cameras for suspicious behavior, and then reacting, is over. This method has proven ineffective, especially as surveillance continues to proliferate in home, business, smart cities and other connected environments. In addition, conventional live-video monitoring services tend to not mention the total inherent delay times from the detection of an intrusion to the execution of effective deterrence reactions.

With the ongoing shortage of labor and contract guard services, as well as humans who simply can’t stay attentive to multiple video displays, technology is stepping up to assist and revolutionize remote monitoring services.

Sensing, detection, analytics and artificial intelligence (AI) have changed the formula of monitoring from an after-the-fact forensic activity to a proactive and strategic tool that can actually deter and prevent crime and property loss, at a lower total cost of ownership to the user. Now, the emphasis is on automation of video monitoring by pinpointing the alarms that really matter, significantly reducing the labor and customer cost to monitor cameras and ultimately signaling a step up in the demand for video alarm monitoring services.

All Eyes on Video
The use of security cameras and human surveillance to protect people and property has exploded over the last few decades. Interestingly, property crimes in the United States have dropped from 4,740 per 100,000 people in 1991 to 2,110 per 100,000 people in 2019. It is likely the adoption of security cameras and surveillance has influenced this positive trend.

Also, according to a recent report by PEW Research Center, “just one-third (34%) of all property crimes are reported, with the general feeling being that the police would not or could not do anything to help. Others felt that the crimes were either too trivial or more of a personal nature.”

According to FBI crime data, in 2020 stolen property loss in the United States was estimated at $971 billion versus recovered value of $54 billion for a recovery rate of 5.6%. The burglary trend in 2022 is heading upward as evidenced by reports from the New York Police Department (NYPD) and Chicago Police Department (CPD) where burglaries have increased 32.7% and 35%, respectively in same period comparisons of 2022 to 2021.

The key takeaways from the crime statistics are the reappearance of an upward trend in burglary and an extremely low loss recovery rate. Cameras as a post-crime forensic tool with only a 5.6% burglary recovery rate has a poor payback. Video monitoring with 911 dispatch capability is both expensive and dependent upon the response time of authorities. Technology is the answer. Where do we go from here? The answer is in the application of technology.

There is significant potential in using deep-learning artificial intelligence to not only automate deterrence of intrusion but also to automate a significant proportion of the human labor required to monitor video. Crime occurs in seconds. Time matters.

Automating deterrence with randomized and unpredictable actions offers an immediate response and is proven effective in thwarting unwanted intrusion. Further, adoption of deep-learning technology to automate video monitoring offers a reduction in labor cost which enables more attractive pricing for this RMR service and ultimately an increase in the demand for video surveillance services.

The State of RVM
Interviews with remote video monitoring (RVM) businesses has yielded a general understanding of the current operational state and overall cost picture. Most RVM business models require monitoring staff to verify the validity of all events detected on a client’s property. This is followed by human assessment of the intent of the intrusion (e.g., casual intruder, loiterer, criminal intention, employee, cleaning crew, security guard, etc.).

If the intruder exhibits ill intent or persistently loiters, monitoring staff can engage the intruder with voice down messages and alarms and, if necessary, dispatch authorities. Some RVM providers may also schedule automated deterrence actions while continuing to monitor the reaction of the intruder. To reduce false positives, the industry is quickly adopting and testing various cloud or edge video analytics and AI tools. Typical monitoring productivity seems to average between 150 to 200 cameras/person resulting in burdened labor costs around $20 to $25/camera/month.

Development teams are training convolutional neural networks (CNN) algorithms within the AI application to accurately and quickly detect both intrusion and persistent loitering for use in fully automating proportional deterrence reactions. In deep learning, CNN is a class of artificial neural network (ANN), most commonly applied to analyze visual imagery.

Upon review of tens of thousands of recorded intrusions on commercial properties, we have proven that 99% of unwanted intrusions were successfully deterred without the need for human interaction. The characteristics of these intrusions and deterrence events have been extremely useful in shaping our understanding of when it is important to engage human intervention and of course when it is needless.

Conservative estimates have convinced us that an 80% reduction in the labor cost to monitor cameras is achievable when we properly train CNN technology to automate a significant portion of the monitoring task. This represents a reduction in labor cost from $25 to $5/camera/month. The efficiency is realized from both the classification technology combined with an operator interface that easily communicates event priorities.

Deep-learning artificial intelligence is the future of video monitoring. Proper application successfully automates deterrence of unwanted intrusions and focuses human operators on the real threats and safety concerns that require intervention and possibly 911 dispatch. The result of this technology evolution is lower costs for both the service provider and property owner - driving higher market adoption and continued declines in burglary trends.

This article originally appeared in the September / October 2022 issue of Security Today.

Featured

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings.

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.