INDUSTRY PROFESSIONAL

Analytics Uncovered

Part 1 – Terminology. If you are in the physical security industry, there’s no escaping discussion on video analytics, their advanced capabilities and the barrage of terminology being associated with what promises to be a turning point for physical security and business intelligence applications.

What does it all mean, and where to start?

Here is information on video analytics accessible and easy to understand for all. We will take a high-level look at various aspects of today’s intelligent, AI-driven video analytics. From what analytics really can do, to how they work, to where they can be best applied and even how they differ. The goal is not to be Ph.D.-perfect, but to provide the tools you need to understand the world of analytics. It is down-to-earth, and a no-frills guide for you.

What is New
Before diving in, it is important to understand how analytics got to where it is today.
Traditional programming consists of using data inputs and written programs to provide an output or action. Essentially, software engineers write code to instruct machines how to act. Machines then follow the instructions, repeating the required action over again.

In contrast, Machine Learning is more akin to human learning, and humans learn by patterns, not by simply following instructions. As babies, we recognize that crying leads to receiving food. As adults, we bring an umbrella with us on a cloudy day. We are conditioned to problem-solve based by observing examples of actions and reactions.

The new world of AI-driven video analytics is a pattern recognition on a massive scale. Known actions and their corresponding reactions analyzed by software, and through the process of machine learning, provided with programs that can detect, analyze new and evolving patterns.

A fundamental example is AI-driven video analytics for smoke detection. Computers get images, and videos of smoke (input) and provided with alerting (output). Machine learning creates a program that recognizes smoke, and thus alerts users to its occurrence.

Large-scale pattern recognition is applied at the micro level. Smoke may not be visible to the naked eye, but computers can look at instances of smoke on a pixel-by-pixel level. The ability to use machine learning in this way makes it possible to problem-solve in ways not previously possible by humans. This is the present and future of analytics today.

Terminology, Simplified
There are several key terms in the exploration of AI-driven video analytics. Some we have touched on briefly already and are likely to touch on again. Others you will also see used as marketing buzzwords to make a company sound “innovative” or “advanced,” but are often not used correctly, further contributing to AI-driven video analytics’ mystique.

The following is a glossary of terms designed to give necessary information without the need for a software engineering degree.

Algorithm. Instructions embedded in computer software to convert inputs (questions) to outputs (answers).
Artificial Intelligence. A broad, wide-ranging term to describe the process of making machines and computers capable of performing tasks traditionally relegated to human intelligence.
Computer Vision. Uses video and digital images to extract data for analysis.
Machine Learning. A subset of AI that allows machines to learn from patterns.
Deep Learning. A subset of Machine Learning that seeks to mimic how the human brain works to create patterns and make predictions.
Model. The output of a Machine Learning algorithm that results in pattern recognition. Also known as a program.
Training. The process of sending evidence, or examples of what is necessary, to the computer to create a model.
Inference. The process of putting the model into action to make a prediction.

Understanding Deep Learning
Deep Learning is perhaps the most advanced subset of AI. Since it attempts to mimic the human brain, it far surpasses the brain’s capabilities – and it does so via Neural Networks.

Imagine you are viewing a blurry scene. Add a lens like when undergoing an eye exam, and the scene becomes clearer. Add another lens, and even more definition is visible. The more lenses added, the sharper and more detailed is the image. This system of adding layers (lenses in this example) to progressively understand a 'scene' is similar to how we think about modern Machine Learning.

Each additional lens becomes its own individual Neural Network. When multiple lenses are added, it is called a Convolutional Neural Network (CNN). Deep Learning is when Machine Layers layers added, each building upon the previous layer to create better patterns to a more complex problem. For example, one Machine Layer may detect a vehicle, the next layer detects a license plate, and the final layer reads the license plate. Each of these layered models can combine to form a Deep Learning Model capable of solving a more complex vehicle identification challenge.

This article originally appeared in the September / October 2022 issue of Security Today.

Featured

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

  • AI Used as Part of Sophisticated Espionage Campaign

    A cybersecurity inflection point has been reached in which AI models has become genuinely useful in cybersecurity operation. But to no surprise, they can used for both good works and ill will. Systemic evaluations show cyber capabilities double in six months, and they have been tracking real-world cyberattacks showing how malicious actors were using AI capabilities. These capabilities were predicted and are expected to evolve, but what stood out for researchers was how quickly they have done so, at scale. Read Now

  • Why the Future of Video Security Is Happening Outside the Cloud

    For years, the cloud has captivated the physical security industry. And for good reasons. Remote access, elastic scalability and simplified maintenance reshaped how we think about deploying and managing systems. Read Now

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis.

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.