INDUSTRY PROFESSIONAL

Analytics Uncovered

Part 1 – Terminology. If you are in the physical security industry, there’s no escaping discussion on video analytics, their advanced capabilities and the barrage of terminology being associated with what promises to be a turning point for physical security and business intelligence applications.

What does it all mean, and where to start?

Here is information on video analytics accessible and easy to understand for all. We will take a high-level look at various aspects of today’s intelligent, AI-driven video analytics. From what analytics really can do, to how they work, to where they can be best applied and even how they differ. The goal is not to be Ph.D.-perfect, but to provide the tools you need to understand the world of analytics. It is down-to-earth, and a no-frills guide for you.

What is New
Before diving in, it is important to understand how analytics got to where it is today.
Traditional programming consists of using data inputs and written programs to provide an output or action. Essentially, software engineers write code to instruct machines how to act. Machines then follow the instructions, repeating the required action over again.

In contrast, Machine Learning is more akin to human learning, and humans learn by patterns, not by simply following instructions. As babies, we recognize that crying leads to receiving food. As adults, we bring an umbrella with us on a cloudy day. We are conditioned to problem-solve based by observing examples of actions and reactions.

The new world of AI-driven video analytics is a pattern recognition on a massive scale. Known actions and their corresponding reactions analyzed by software, and through the process of machine learning, provided with programs that can detect, analyze new and evolving patterns.

A fundamental example is AI-driven video analytics for smoke detection. Computers get images, and videos of smoke (input) and provided with alerting (output). Machine learning creates a program that recognizes smoke, and thus alerts users to its occurrence.

Large-scale pattern recognition is applied at the micro level. Smoke may not be visible to the naked eye, but computers can look at instances of smoke on a pixel-by-pixel level. The ability to use machine learning in this way makes it possible to problem-solve in ways not previously possible by humans. This is the present and future of analytics today.

Terminology, Simplified
There are several key terms in the exploration of AI-driven video analytics. Some we have touched on briefly already and are likely to touch on again. Others you will also see used as marketing buzzwords to make a company sound “innovative” or “advanced,” but are often not used correctly, further contributing to AI-driven video analytics’ mystique.

The following is a glossary of terms designed to give necessary information without the need for a software engineering degree.

Algorithm. Instructions embedded in computer software to convert inputs (questions) to outputs (answers).
Artificial Intelligence. A broad, wide-ranging term to describe the process of making machines and computers capable of performing tasks traditionally relegated to human intelligence.
Computer Vision. Uses video and digital images to extract data for analysis.
Machine Learning. A subset of AI that allows machines to learn from patterns.
Deep Learning. A subset of Machine Learning that seeks to mimic how the human brain works to create patterns and make predictions.
Model. The output of a Machine Learning algorithm that results in pattern recognition. Also known as a program.
Training. The process of sending evidence, or examples of what is necessary, to the computer to create a model.
Inference. The process of putting the model into action to make a prediction.

Understanding Deep Learning
Deep Learning is perhaps the most advanced subset of AI. Since it attempts to mimic the human brain, it far surpasses the brain’s capabilities – and it does so via Neural Networks.

Imagine you are viewing a blurry scene. Add a lens like when undergoing an eye exam, and the scene becomes clearer. Add another lens, and even more definition is visible. The more lenses added, the sharper and more detailed is the image. This system of adding layers (lenses in this example) to progressively understand a 'scene' is similar to how we think about modern Machine Learning.

Each additional lens becomes its own individual Neural Network. When multiple lenses are added, it is called a Convolutional Neural Network (CNN). Deep Learning is when Machine Layers layers added, each building upon the previous layer to create better patterns to a more complex problem. For example, one Machine Layer may detect a vehicle, the next layer detects a license plate, and the final layer reads the license plate. Each of these layered models can combine to form a Deep Learning Model capable of solving a more complex vehicle identification challenge.

This article originally appeared in the September / October 2022 issue of Security Today.

Featured

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

New Products

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings.

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities