Homeland Security Insider

Detecting the undetectable

The Transportation Security Administration is doing a good job protecting air travelers. Likewise, airport security managers are working hard to keep the public safe and to speed us through the facilities. Until recently, getting through airport security was technologically simple -- bags were run through an X-ray scanner while walking through a conventional metal detector. X-ray scanners and metal detectors alerted airport security personnel to the presence of hidden metal weapons like knives or guns. However, X-ray scanners and metal detectors won't pick up organic-chemical hazards like explosives, biological warfare agents, toxic industrial chemicals and illegal drugs. To detect these substances, security agents look for the telltale traces of chemicals that evaporate from the surfaces of these substances by using various kinds of chemical "sniffers." Ion mobility spectrometers (IMS) are among the most commonly used instruments for this type of detection.

X-ray scanners and metal detectors won't pick up organic-chemical hazards like explosives, biological warfare agents, toxic industrial chemicals and illegal drugs. To detect these substances, security agents look for the telltale traces of chemicals that evaporate from the surfaces of these substances by using various kinds of chemical "sniffers."

The process begins when a security officer wipes an absorbent swab over a person's clothing or luggage and then inserts the swab into a small, heated chamber for analysis. Inside the chamber, traces of organic compounds the swab has picked up evaporate and mix with a carrier gas that is swept into the main part of the instrument. The ion mobility spectrometry technique separates and detects electrically charged particles (ions) that have been sorted according to how fast the ions travel through an electrical field in a tube. Inside the instrument, a radioactive substance, commonly Nickel or Americium, similar to that used in ionization smoke detectors, is housed in a small chamber that is shielded from the outside, but accessible to the inside of the instrument.

The radioactive source gives off high-energy electrons that collide with the sample molecules and the carrier gas to form ions. The small ions travel fast and reach the detector first, with successively larger ions following. In a way, different-sized molecules have different-sized parachutes behind them. The molecules are all drawn through the electric field, but larger molecules are held up more by the carrier gas. It is different than a similar technique -- time-of-flight mass spectroscopy -- because it does not rely primarily on mass, but rather the size and shape of a molecule for separation. IMS also is carried out at atmospheric pressure and has lower power requirements than mass spectroscopy.

Handheld, portable IMS units are now in use in many places, including the battlefield in Iraq, where they are being used by U.S. and coalition forces to detect chemical agents. Federal and some state law enforcement agencies carry IMS instruments on raids for on-site identification of illegal drugs. On-site monitoring of pesticides, chemical warfare agents and industrial chemicals is becoming common.

Today, there are a number of commercial IMS instruments of various designs available. Dennis Koehler, vice president of sales and marketing for Golden, Colo.-based Isonics Corp., said his company's IMS technology can detect and identify toxic chemicals down to parts per billion with good sensitivity, fast operating speeds and operating simplicity. Isonics offers both handheld and portable units that specialize in real-time detection of chemical warfare agents, toxic industrial chemicals and homemade explosives.

Each Isonics unit can be custom configured to identify up to16 different substances at a time. This is important because current IMS technology only sorts molecules by size, not by chemical properties or other identifying features. IMS is not designed for making positive identification of unknown compounds. Instruments for use in airports and other security screening locations are programmed with a set of signatures from known hazardous or illegal compounds. When a sample matches any of these signatures, the person or object can be checked again using more detailed methods. The extra check ensures that heart patients who take nitroglycerin, construction workers who handle explosives or other innocent passengers are not mistakenly identified as criminal or terrorist suspects.

With the Isonics instrument, detection and identification occur subsequent to one another. Communication with an external computer -- data exchange, recording spectra -- is done via a conventional USB port. Optionally, the device can be set to trigger an alarm signal (optic, acoustic) or other pre-determined countermeasures once a designated chemical or homemade explosive signature is detected. In a 2005 taxi cab test, the portable Isonics device found traces of mustard gas simulant on articles of clothing from passengers sitting inside the vehicle.

IMS technique detects concentrations in the pictogram (10-12) to nanogram (10-9 ) range. There is little or no sample preparation, and the analytical response usually occurs within 15 seconds. Untrained operators become skillful with the instrument in a matter of a few hours.

Officials are correct to use a layered approach to security that relies on multiple methods, including individual searches; ion mobility spectrometers; metal detectors; X-rays; intelligence; behavior observation techniques; canines; random searches; air marshals; and additional security measures both visible and invisible to the public. No single method of inspection works all the time. A layered approach strengthens the value of security, creating a much stronger, more formidable system. No longer can we rely solely on metal detectors and X-rays to keep us safe. The war on terrorism and the drive to secure the homeland against those who would do us harm is not only a competition between competing ideologies, but also a contest between competing uses of technology. The race to deploy technology will require us to provide incentives for our best minds and companies to roll up their sleeves and get to work. If the activity since 9/11 is any guide to the future, we are off to an excellent start.

About the Author

Timothy D. Ringgold, Colonel, Army (Ret.), is the CEO of Defense Solutions LLC, based in Washington, D.C. He can be reached at (610) 833-6000.

Featured

  • Brivo, Eagle Eye Networks Merge

    Dean Drako, Chairman of Brivo, the leading global provider of cloud-native access control and smart space technologies, and Founder of Eagle Eye Networks, the global leader in cloud AI video surveillance, today announced the two companies will merge, creating the world’s largest AI cloud-native physical security company. The merged company will operate under the Brivo name and deliver a truly unified cloud-native security platform. Read Now

  • Security Industry Association Announces the 2026 Security Megatrends

    The Security Industry Association (SIA) has identified and forecasted the 2026 Security Megatrends, which form the basis of SIA’s signature annual Security Megatrends report defining the top 10 factors influencing both near- and long-term change in the global security industry. Read Now

  • The Future of Access Control: Cloud-Based Solutions for Safer Workplaces

    Access controls have revolutionized the way we protect our people, assets and operations. Gone are the days of cumbersome keychains and the security liabilities they introduced, but it’s a mistake to think that their evolution has reached its peak. Read Now

  • A Look at AI

    Large language models (LLMs) have taken the world by storm. Within months of OpenAI launching its AI chatbot, ChatGPT, it amassed more than 100 million users, making it the fastest-growing consumer application in history. Read Now

  • First, Do No Harm: Responsibly Applying Artificial Intelligence

    It was 2022 when early LLMs (Large Language Models) brought the term “AI” into mainstream public consciousness and since then, we’ve seen security corporations and integrators attempt to develop their solutions and sales pitches around the biggest tech boom of the 21st century. However, not all “artificial intelligence” is equally suitable for security applications, and it’s essential for end users to remain vigilant in understanding how their solutions are utilizing AI. Read Now

New Products

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities