Identity Management Supplement

Fusion Frenzy

Combined sensor technology to help airport security

IN U.S. airports with one or more checkpoint areas, security officials have probably never thought of themselves as ID managers.

Most often referred to as greeters, they are tasked with identifying passengers by their photo ID or passport, along with a brief check of their boarding card, to verify that each passenger is rightfully attempting to enter a controlled airport area. But these agents are currently not equipped with effective tools to detect forged documents.

Such a solution can be expected to perform faster, higher quality security identification checks, complementing existing protocols with automated explosives and other threat detection capabilities.

Detection systems fusion protocol (DSFP) -- an emerging methodology for the connection of multiple security sensors and intelligent communication between them and other systems -- is poised to change that.

From an operational standpoint, more and more passengers today are growing accustomed to interfacing with quick and efficient aviation kiosks of various types. In the same way that retrieval of boarding passes at automated kiosks can save time and effort, deployment of ID kiosks as a replacement to at least a portion of the greeter function reduces the lines -- and staffing needs -- at the entrances to checkpoints.

From a cost perspective, at about $130,000 per unit, an ID kiosk is a cost-effective alternative to human resources that might better be deployed to perform other tasks. Such a future kiosk would be a freestanding, data-integrated unit, likely be deployed in groups of up to five units, depending on traffic demands, per checkpoint area. It will be able to perform several security tasks, including validating the identity of a passenger by comparing the passenger?s government-issued photo ID with a digitally captured picture of the passenger's face. It also will verify the ID document presented by the passenger is both authentic and current. Using a link to airline databases, the kiosk also will verify the passenger's boarding card is valid and current.

The ID kiosk also will be able to scan the passenger for presence of explosives using a trace-based finger sampling technique. A quadrupole resonance-based shoe scanner will scan for explosives and other threats in passengers' shoes. Taken together, advent of the technologies leads to elimination of shoe- and jacket-removal requirements at some checkpoints.

The data collected by various sensors in the ID kiosk will then be associated with the passenger's ID number -- taken from the boarding card or other travel document -- for the purpose of optimizing the effectiveness of downstream security checks and passenger flow.

Such a solution can be expected to perform faster, higher quality security identification checks, complementing existing protocols with automated explosives and other threat detection capabilities.

Data Management Prowess
The kiosk document processor, a module within the ID kiosk, will extract data from various ID documents, standard and non-standard travel documents and driver's licenses. It will obtain the passenger's name and other ID information while providing an indication of suspected document forgeries.

The ID kiosk will process the data from the ID document and compare its information with security information databases in order to automatically define the passenger's required security screening level. The kiosk also will identify the country of origin of the ID document and address the passenger in their own language.

At the GE Global Research Center, developing the feature, there are plans for a two-phase program focused on enabling automatic verification of photographic IDs. In the first phase, an initial prototype system will use a commercial, off-the-shelf facial recognition engine to compare an actual image of the traveler and the presented ID's photo.

However, GE officials believe there is considerable room for improvement over generic face recognition approaches. If a face-ID verification engine tuned specifically for the ID kiosk is developed, greater accuracy can be achieved.

Most facial recognition engines are designed for searching large databases as opposed to verification of a given match. Thus, a match score is defined for each comparison, and decisions are made based on a threshold. However, in verification, problems are associated with people trying to impersonate the true owner of the photo ID. This suggests a discriminative approach, which attempts to maximize the margin between true and similar matches.

In phase two, an ID verification engine will be developed specifically for the ID kiosk application. To do this, GE Security has developed the DSFD methodology for connecting multiple sensors, as well as a communication protocol to optimize system communication.

DSFP is a small software plug-in that could become the first industry-wide sensor fusion standard. It defines how systems exchange data, make decisions, and merge decisions and inputs.

The DSFP protocol can help get sensor fusion up and running in the security industry. Its simplicity can save manufacturer research and development costs and shorten the time to market for new sensor combinations. DSFP gets all sensors to speak the same quantitative language and provides the means to integrate intelligence and other non-sensor data into multi-sensor systems.

DSFP quantifies risk by assigning the threat status of a person/passenger or bag a numeric value -- a threat state. Sensors using the DSFP protocol can refine the threat state without the need for an external computer to do top-level information handling. The process is referred to as threat-state propagation as the state of the threat, on a per-item basis, propagates from sensor to sensor while becoming more accurate with every step.

For example, as a passenger and their bags pass through multiple systems or sensors, the sensors collect and share information. The threat states for the passenger and bags move from sensor to sensor, being increasingly refined and more accurate with additional real-time information.

The resulting threat states then more accurately indicate risk than standalone systems. Such a system can reduce false alarm rates, as well as speed up the security process for the entire system.

How ID Systems Operate
The ID kiosk will interact with passengers through a driven-user interface. Through its graphical user interface, software will guide passengers through a series of actions, such as touch the trace explosives detector sensor button, place identification on the KDP or scan boarding passes.

The ID kiosk will be networked to a database application running on a remote computer. Passenger data, including items such as a bar-code identifier, explosive trace detection results, photograph, facial recognition match and documentation verification, will all be readily available for query. Using the passenger's boarding pass barcode to make a query, data can be retrieved, or when new data is available, it can be added to the passenger record. Such an ID management program allows a dynamic record to follow a passenger navigating the security process, allowing the process to adapt to threat probability.

In the sensor-fused airport environment of tomorrow, no longer will greeters be assigned a task virtually impossible for humans to successfully undertake, especially hour after hour. An automated system will not only detect and determine activities the human eye cannot detect, but it will additively sum together any and all discrepancies noted during the screening process. From bomb detection to fraudulent entry -- or exit -- automation of the ID management process will increase both safety and passenger convenience.

This article originally appeared in the January 2007 issue of the Security Products Identity Management supplement pg. 26D-26E.


Featured

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

  • AI Used as Part of Sophisticated Espionage Campaign

    A cybersecurity inflection point has been reached in which AI models has become genuinely useful in cybersecurity operation. But to no surprise, they can used for both good works and ill will. Systemic evaluations show cyber capabilities double in six months, and they have been tracking real-world cyberattacks showing how malicious actors were using AI capabilities. These capabilities were predicted and are expected to evolve, but what stood out for researchers was how quickly they have done so, at scale. Read Now

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles.

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.