Scientists Find Method To Automatically Detect Internet Worms

Scientists may have found a new way to combat the most dangerous form of computer virus.

The method automatically detects within minutes when an Internet worm has infected a computer network.

Network administrators can then isolate infected machines and hold them in quarantine for repairs.

Ness Shroff, Ohio Eminent Scholar in Networking and Communications at Ohio State University, and his colleagues describe their strategy in the current issue of IEEE Transactions on Dependable and Secure Computing.

They discovered how to contain the most virulent kind of worm: the kind that scans the Internet randomly, looking for vulnerable hosts to infect.

"These worms spread very quickly," Shroff said. "They flood the Net with junk traffic, and at their most benign, they overload computer networks and shut them down."

Code Red was a random scanning worm, and it caused $2.6 billion in lost productivity to businesses worldwide in 2001. Even worse, Shroff said, the worm blocked network traffic to important physical facilities such as subway stations and 911 call centers.

"Code Red infected more than 350,000 machines in less than 14 hours. We wanted to find a way to catch infections in their earliest stages, before they get that far," Shroff said.

The key, they found, is for software to monitor the number of scans that machines on a network send out. When a machine starts sending out too many scans -- a sign that it has been infected -- administrators should take it off line and check it for viruses.

The strategy sounds straightforward enough. A scan is just a search for Internet addresses -- what we do every time we use search engines such as Google. The difference is, a virus sends out many scans to many different destinations in a very short period of time, as it searches for machines to infect.

"The difficulty was figuring out how many scans were too many," Shroff said. "How many could you allow before an infection would spread wildly? You want to make sure the number is small to contain the infection. But if you make it too small, you'll interfere with normal network traffic."

"It turns out that you can allow quite a large number of scans, and you'll still catch the worm."

Shroff was working at Purdue University in 2006 when doctoral student Sarah Sellke suggested making a mathematical model of the early stages of worm growth. With Saurabh Bagchi, assistant professor of electrical and computer engineering at Purdue, they developed a model that calculated the probability that a virus would spread, depending on the maximum number of scans allowed before a machine was taken off line.

In simulations, they pitted their model against the Code Red worm, as well as the SQL Slammer worm of 2003. They simulated how far the virus would spread, depending on how many networks on the Internet were using the same containment strategy: quarantine any machine that sends out more than 10,000 scans.

They chose 10,000 because it is well above the number of scans that a typical computer network would send out in a month.

"An infected machine would reach this value very quickly, while a regular machine would not," Shroff explained. "A worm has to hit so many IP addresses so quickly in order to survive."

In the simulations pitted against the Code Red worm, they were able to prevent the spread of the infection to less than 150 hosts on the whole Internet, 95 percent of the time.

A variant of Code Red worm (Code Red II) scans the local network more efficiently, and finds vulnerable targets much faster. Their method was effective in containing such worms. In the simulations, they were able to trap the worm in its original network -- the one that would have started the outbreak -- 77 percent of the time.

Anywhere from 10 to 20 percent of the time, it spread to one other network, but no further. The remaining 3 to 13 percent of the time, it escaped to more networks, but the infection was slowed.

In all cases, there was a dramatic decrease in the spread of the worm within the first hour.

To use this strategy, network administrators would have to install software to monitor the number of scans on their networks, and would have to allow for some downtime among computers when they initiate a quarantine.

According to Shroff, that wouldn't be a problem for most organizations. Very small businesses -- ones with only a few servers -- may have more difficulty taking their machines off line.

"Unfortunately there is no complete foolproof solution," Shroff said. "You just keep trying to come up with techniques that limit a virus's ability to do harm."

He and his colleagues are working on adapting their strategy to stop targeted Internet worms -- ones that have been designed specifically to attack certain vulnerable IP addresses.

This work was supported by a grant from the National Science Foundation, and Sarah Sellke's NSF Graduate Fellowship.

Featured

  • New Gas Monkey Garage Venue Uses AI-Enhanced Video Technology

    Gas Monkey Garage, the automotive custom shop and entertainment brand founded by Richard Rawlings of Fast N’ Loud TV fame, has opened a vibrant new restaurant and bar in South Dakota, equipped with advanced, AI-enhanced video tech from IDIS Americas. Read Now

  • Data Driven, Proactive Response

    As cities face rising demands for smarter policing and faster emergency response, Real Time Crime Centers (RTCCs) are emerging as essential hubs for data-driven public safety. In this interview, two experts with deep field experience — Ross Bourgeois of New Orleans and Dean Cunningham of Axis Communications — draw on decades of operational, leadership and technology expertise to share how RTCCs are transforming public safety through innovation, interagency collaboration and a relentless focus on community impact. Read Now

  • Integration Imagination: The Future of Connected Operations

    Security teams that collaborate cross-functionally and apply imagination and creativity to envision and design their ideal integrated ecosystem will have the biggest upside to corporate security and operational benefits. Read Now

  • Smarter Access Starts with Flexibility

    Today’s workplaces are undergoing a rapid evolution, driven by hybrid work models, emerging smart technologies, and flexible work schedules. To keep pace with growing workplace demands, buildings are becoming more dynamic – capable of adapting to how people move, work, and interact in real-time. Read Now

  • Trends Keeping an Eye on Business Decisions

    Today, AI continues to transform the way data is used to make important business decisions. AI and the cloud together are redefining how video surveillance systems are being used to simulate human intelligence by combining data analysis, prediction, and process automation with minimal human intervention. Many organizations are upgrading their surveillance systems to reap the benefits of technologies like AI and cloud applications. Read Now

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings.

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.