Researchers Designing Ventilation System To Protect Buildings From Chemical Warfare, Bioterrorist Attacks

Researchers at the University of Saskatchewan (U of S) in Canada have opened a new engineering lab to design a ventilation system that could protect schools, hospitals, and other public buildings from chemical warfare and bioterrorist attacks.

“Think of it as a complex fire alarm for industrial chemical spills, airborne diseases, and biological warfare strikes on vulnerable public spaces,” said engineering dean and lead researcher Janusz Kozinski.

“Whether an emergency starts with a terrorist’s biowarfare assault or a contagious disease seeping through a hospital’s air ducts, time is of the essence,” Kozinski said. “This system promises to give citizens and emergency workers in these scenarios the extra seconds they need to respond before it’s too late.”

The Early Warning and Response system (eWAR) addresses what Kozinski views as major threats to public safety -- the release of noxious chemicals and bio-agents into public buildings either accidentally through industrial spills or purposely through bioterrorist assaults that target ventilation systems. It could also address the threat of outbreaks by detecting diseases, such as chickenpox and tuberculosis, before they spread through a hospital’s air vents.

The new lab-scale set-up includes a model HVAC system that runs different simulations of potential building contamination scenarios. Using the model HVAC system, Kozinski and his colleagues will further investigate how humidity, air pressure, wind, and temperature influence the spread of noxious fumes and biochemical agents.

The lab’s research will help determine how eWAR can both filter harmful agents out of the air and activate warnings when airborne contaminants reach a critical density. In its current design, eWAR quickly notifies building residents about potential threats and conserves energy by only activating in times of potential crisis.

“We are expanding the scope of eWAR applications to cover a wider base of situations that may affect civilian populations, such as the spread of influenza, anthrax, or nerve agent sarin,” said Andre Dascal, a McGill University associate professor of medicine, microbiology, and immunology collaborating on the project.

Once fully developed, eWAR is expected to fill a gap in the bio-defence marketplace, where maintaining bio-security in public buildings is not economically feasible using current technologies. An integrated eWAR system could make detecting the myriad chemicals and bio-agents part of normal security procedures, essentially creating “immune buildings.”

“Shopping malls, government facilities, and commercial buildings are all waiting for a system like eWAR to give first responders enough time to evacuate people from public places before they are exposed to dangerous chemicals and biohazards,” said Suzanne L. Lebel, Chairman of Alert B & C. “As partners in the eWAR project, we will use our TRAKERTM instruments to rapidly detect and identify harmful agents.”

The eWAR project is a research consortium formed by the U of S, McGill University, Concordia University, the Biotechnology Research Institute, the Directorate of Public Health of Montreal, UV-Sterisource, and ALERT B & C.

Featured

New Products

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.