Researchers Designing Ventilation System To Protect Buildings From Chemical Warfare, Bioterrorist Attacks

Researchers at the University of Saskatchewan (U of S) in Canada have opened a new engineering lab to design a ventilation system that could protect schools, hospitals, and other public buildings from chemical warfare and bioterrorist attacks.

“Think of it as a complex fire alarm for industrial chemical spills, airborne diseases, and biological warfare strikes on vulnerable public spaces,” said engineering dean and lead researcher Janusz Kozinski.

“Whether an emergency starts with a terrorist’s biowarfare assault or a contagious disease seeping through a hospital’s air ducts, time is of the essence,” Kozinski said. “This system promises to give citizens and emergency workers in these scenarios the extra seconds they need to respond before it’s too late.”

The Early Warning and Response system (eWAR) addresses what Kozinski views as major threats to public safety -- the release of noxious chemicals and bio-agents into public buildings either accidentally through industrial spills or purposely through bioterrorist assaults that target ventilation systems. It could also address the threat of outbreaks by detecting diseases, such as chickenpox and tuberculosis, before they spread through a hospital’s air vents.

The new lab-scale set-up includes a model HVAC system that runs different simulations of potential building contamination scenarios. Using the model HVAC system, Kozinski and his colleagues will further investigate how humidity, air pressure, wind, and temperature influence the spread of noxious fumes and biochemical agents.

The lab’s research will help determine how eWAR can both filter harmful agents out of the air and activate warnings when airborne contaminants reach a critical density. In its current design, eWAR quickly notifies building residents about potential threats and conserves energy by only activating in times of potential crisis.

“We are expanding the scope of eWAR applications to cover a wider base of situations that may affect civilian populations, such as the spread of influenza, anthrax, or nerve agent sarin,” said Andre Dascal, a McGill University associate professor of medicine, microbiology, and immunology collaborating on the project.

Once fully developed, eWAR is expected to fill a gap in the bio-defence marketplace, where maintaining bio-security in public buildings is not economically feasible using current technologies. An integrated eWAR system could make detecting the myriad chemicals and bio-agents part of normal security procedures, essentially creating “immune buildings.”

“Shopping malls, government facilities, and commercial buildings are all waiting for a system like eWAR to give first responders enough time to evacuate people from public places before they are exposed to dangerous chemicals and biohazards,” said Suzanne L. Lebel, Chairman of Alert B & C. “As partners in the eWAR project, we will use our TRAKERTM instruments to rapidly detect and identify harmful agents.”

The eWAR project is a research consortium formed by the U of S, McGill University, Concordia University, the Biotechnology Research Institute, the Directorate of Public Health of Montreal, UV-Sterisource, and ALERT B & C.

Featured

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings.