Model Assigns Probable Risk Of Attack To Computer Networks

Data breaches are a recurring nightmare for IT managers responsible for securing not only their company’s confidential data, but possibly also sensitive information belonging to their clients, such as social security numbers or health or financial records. To help managers safeguard valuable information most efficiently, computer scientists at the National Institute of Standards and Technology (NIST) are applying security metrics to computer network pathways to assign a probable risk of attack to guide IT managers in securing their networks.

“We analyze all of the paths that system attackers could penetrate through a network,” said computer scientist Anoop Singhal, “and assign a risk to each component of the system. Decision makers can use our assigned probabilities to make wise decisions and investments to safeguard their network.” The research was presented at a conference earlier this month.

Computer networks are made up of components varying from individual computers, to servers and routers. Once inside a network’s firewall, for a seemingly mild-mannered purpose as posting an image to a file transfer protocol (FTP) site, a hacker can travel through the network through a variety of routes to hit the jackpot of valuable data. In addition to hardware, the hacker can break in through software on the computers, especially file-sharing applications that have been blamed for some major data breaches recently.

NIST researchers evaluate each route and assign it a risk based on how challenging it is to the hacker. The paths are determined using a technique called “attack graphs.” A new analysis technique based on attack graphs was jointly developed by Singhal and research colleagues at George Mason University. A patent is pending on the technique.

Singhal and his team determine risk by using these attack graphs and NIST’s National Vulnerability Database (NVD). This government repository includes a collection of security-related software weaknesses that hackers can exploit. NVD data was collected from software vendors and scores are assigned from most to least insecure by experts.

For example in a simple system there is an attacker on a computer, a firewall, router, an FTP server and a database server. The goal for the attacker is to find the simplest path into the jackpot -- the database server. Attack Graph Analysis determines three potential attack paths. For each path in the graph, the NIST researchers assign an attack probability based on the score in the NVD database.

Because it takes multiple steps to reach the goal, the probabilities of each component are multiplied to determine the overall risk. One path takes only three steps. The first step has an 80 percent chance of being hacked, the second, a 90 percent chance. The final step requires great expertise, so there is only a 10 percent probability it can be breached. By multiplying the three probabilities together, that path is pretty secure with a less than 10 percent chance of being hacked.

The next step is for the researchers to expand their research to handle large-scale enterprise networks.

Featured

  • Security Today Announces The Govies Government Security Award Winners for 2025

    Security Today is pleased to announce the 2025 winners in The Govies Government Security Awards. The awards honor outstanding government security products in a variety of categories. Read Now

  • Survey: 60 Percent of Organizations Using AI in IT Infrastructure

    Netwrix, a cybersecurity provider focused on data and identity threats, today announced the release of its annual global 2025 Cybersecurity Trends Report based on a global survey of 2,150 IT and security professionals from 121 countries. It reveals that 60% of organizations are already using artificial intelligence (AI) in their IT infrastructure and 30% are considering implementing AI. Read Now

  • New Research Reveals Global Video Surveillance Industry Perspectives on AI

    Axis Communications, the global industry leader in video surveillance, has released its latest research report, ‘The State of AI in Video Surveillance,’ which explores global industry perspectives on the use of AI in the security industry and beyond. The report reveals current attitudes on AI technologies thanks to in-depth interviews with AI experts from Axis’ global network and a comprehensive survey of more than 5,800 respondents, including distributors, channel partners, and end customers across 68 countries. The resulting insights cover AI integration and the opportunities and challenges that exist with regard to security, safety, business intelligence, and operational efficiency. Read Now

  • SIA Urges Tariff Relief for Security Industry Products

    Today, the Security Industry Association has sent a letter to U.S. Trade Representative Jamieson Greer and U.S. Secretary of Commerce Howard Lutnick requesting relief from tariffs for security industry products and asking that the Trump administration formulate a process that allows companies to apply for product-specific exemptions. The security industry is an important segment of the U.S. economy, contributing over $430 billion in total economic impact and supporting over 2.1 million jobs. Read Now

  • Report Shows Cybercriminals Continue Pivot to Stealthier Tactics

    IBM recently released the 2025 X-Force Threat Intelligence Index highlighting that cybercriminals continued to pivot to stealthier tactics, with lower-profile credential theft spiking, while ransomware attacks on enterprises declined. IBM X-Force observed an 84% increase in emails delivering infostealers in 2024 compared to the prior year, a method threat actors relied heavily on to scale identity attacks. Read Now

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.