Brain Power

Cognitive intelligence-based video analytics will benefit human security efforts

Security directors face large problems in large facilities. Officials at airports, seaports, industrial facilities and other large installations deal with a unique set of security problems. They also have a unique set of limitations. They must protect against a variety of security threats, many of which are unknown, and they must address these issues with limited manpower. They also are dealing with creative enemies who are always adapting and enhancing their sly methods.

These are the challenges that large-scale facilities must overcome to ensure the safe operation of services on which consumers and citizens depend.

Historically, these facilities have used a variety of approaches to help meet physical security challenges. Many rely heavily on video surveillance systems, while others use police officers or security personnel as supplements to their video surveillance systems. The upside to having a lot of manpower to protect a facility is that officers are on site to stop criminals. But security personnel can’t be everywhere at once, and since it’s impossible for anyone to know exactly where or when the next incident will occur, trying to cover all of the bases can be cost prohibitive. In fact, one large U.S. seaport estimates it spends about $10 million a year for police protection alone.

Using a large number of cameras can help as well, but as the number of cameras goes up, video becomes increasingly difficult to manage. Having cameras does not ensure that they will be watched, and reviewing past footage does not guarantee future security. Successful terrorist attacks of the recent past illustrate how forensic video analysis after the fact is simply not adequate -- if there is no possibility of prosecution after the event, there is no deterrent effect. Therefore, the need for real-time responsiveness to potential threats is critical. Large-scale organizations, in particular, need a solution that enables them to make the best use of available resources to pinpoint incidents and empowers them to respond to potential threats in a proactive manner before they evolve into actual disasters.

Rules-based Security
To meet these needs, security organizations are working to incorporate more advanced and effective technologies that offer improved visibility. More sophisticated forms of object recognition and motion tracking have evolved to provide a heightened sense of awareness in a variety of video surveillance environments. These rules-based systems have become highly specialized for different environments, whether they are focused on perimeter detection, surveying large crowds or watching for abandoned vehicles or dropped objects. However, these rules-based systems also have limitations of their own.

Every environment and every scene is unique. No one is able to write enough rules to cover the infinite number of possibilities for any given environment. Rules-based systems also typically require extensive programming and calibration, making it difficult for users to quickly scale or achieve broad market adoption. Finally, rules-based systems historically generate too many false positives and have become labor intensive to set up and maintain.

So, if rules-based video analytics is not the answer, what is?

Cognitive-Based Security
The ability to create an interconnection between vision analytics and a system that emulates the cognitive process -- using various machine intelligence and machine-learning technologies -- represents a breakthrough for the video surveillance industry. This connection creates a system similar to the human brain; it is called a cognitive-based video analytics system because it can see better, as well as learn, remember and make observations.

Through its observation, a cognitive-based video analytics system assesses a given environment to build a mental model of the scene. It observes patterns of behavior -- understanding the normal flow of traffic in and out of a given entryway, for example -- to establish a standard of normal activity. Learning is achieved when the mental models adjust as the scene changes. The system interprets and alerts, if necessary, on new activities as they occur within the context of previous activities. Through an observe-and-learn paradigm, the camera creates an understanding of what it sees and establishes normal behavior for an environment. It is therefore able to alert on activity it determines to be abnormal.

Realizing the Benefits
In a vulnerable environment with hundreds of cameras all observing a variety of changing scenes, it is especially important to have a cognitive-based system that is able to learn what is normal for every unique environment and then alert when there are activities that occur outside of that normal pattern. Cognitive-based security observes and refines its model of a scene automatically, allowing it to detect, track and classify more efficiently over time.

A system of this kind minimizes labor and software upgrade costs and improves the effectiveness of operators and security personnel by allowing them to focus on events that have the highest probability of being actual threats. A learning capability also is an important component in order for the system to adapt to changes that may occur within any given environment over longer periods of time. Because these systems are able to learn behavior patterns over time, organizations can find out where the areas of greatest risk are and direct available resources to those areas.

These systems also provide real-time alerts, allowing staff to respond immediately to security breaches occurring out of sight.

These capabilities -- to adapt to almost any scene or environment and to continue to improve upon its learning and alerting over time -- are the most important distinguishing factors of cognitive-based systems over rules-based video analytics systems.

The benefits to businesses that adopt cognitive-based video analytics systems over rules-based systems can range from reduced cost due to less required coding and customization, increased effectiveness from reduced false positive alerting and increased return on investment on the entire security infrastructure.

About the Author

Kurt Stoll is the director of Strategic Programs at BRS Labs.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3