Report Reviews DHS Approach To Risk Analysis

The Department of Homeland Security (DHS) is responsible for mitigating a range of threats, including terrorism, natural disasters, and pandemics -- and risk analysis is an essential part of fulfilling that responsibility. This report, undertaken by units across the National Research Council, evaluates risk assessment methods employed by the DHS, concluding that risk analysis capabilities are strong in the area of natural disaster response, but substantial improvement is needed in other areas.

Although the conceptual framework used by DHS to analyze risk appears generally appropriate, the deployment of that framework is frequently deficient. The DHS' risk analysis with regard to natural disasters is mature, employing techniques that are subject to quality assurance and control, as well as verification and validation procedures. Risk analysis capabilities with regard to areas beyond natural disasters, however, are not yet adequate for supporting DHS decision-making because their validity and reliability are untested. Recommendations for addressing these deficiencies are offered, including expanding beyond the quantitative approach that has defined DHS risk analysis to this point.

Key Findings

1. A fully integrated analysis that aggregates widely disparate risks by use of a common metric is not a practical goal and in fact is likely to be inaccurate or misleading given the current state of knowledge of methods used in quantitative risk analysis. The risks presented by terrorist attack and natural disasters cannot be combined in one meaningful indicator of risk, and so an all-hazards risk assessment is not practical. The science of risk analysis does not yet support the kind of reductions in diverse metrics that such a purely quantitative analysis would require. Qualitative comparisons can help illuminate the discussion of risks and thus aid decision makers.

2. DHS has established a conceptual framework for risk analysis (risk is a function of threat (T), vulnerability (V), and consequence (C), or R = f(T,V,C)) that, generally speaking, appears appropriate for decomposing risk and organizing information, and it has built models, data streams, and processes for executing risk analyses for some of its various missions.

3. DHS's risk analysis models for natural hazards are near the state of the art. These models -- which are applied mostly to earthquake, flood, and hurricane hazards -- are based on extensive data, have been validated empirically, and appear well suited to near-term decision needs.

4. The basic risk framework of Risk = f(T,V,C) used by DHS is sound and in accord with accepted practice in the risk analysis field. DHS'operationalization of that framework -- its assessment of individual components of risk and their integration into a measure of risk -- is in many cases seriously deficient and is in need of major revision. More attention is urgently needed at DHS to assessing and communicating the assumptions underlying and the uncertainties surrounding analyses of risk, particularly those associated with terrorism. Until these deficiencies are improved, only low confidence should be placed in most of the risk analyses conducted by DHS.

5. With the exception of risk analysis for natural disaster preparedness, the committee did not find any DHS risk analysis capabilities and methods that are yet adequate for supporting DHS decision making, because their validity and reliability are untested. Moreover, it is not yet clear that DHS is on a trajectory for development of methods and capability that is sufficient to ensure reliable risk analyses other than for natural disasters.

For more information, visit http://www.nap.edu/catalog.php?record_id=12972.

Featured

  • Security Today Announces 2025 CyberSecured Award Winners

    Security Today is pleased to announce the 2025 CyberSecured Awards winners. Sixteen companies are being recognized this year for their network products and other cybersecurity initiatives that secure our world today. Read Now

  • Empowering and Securing a Mobile Workforce

    What happens when technology lets you work anywhere – but exposes you to security threats everywhere? This is the reality of modern work. No longer tethered to desks, work happens everywhere – in the office, from home, on the road, and in countless locations in between. Read Now

  • TSA Introduces New $45 Fee Option for Travelers Without REAL ID Starting February 1

    The Transportation Security Administration (TSA) announced today that it will refer all passengers who do not present an acceptable form of ID and still want to fly an option to pay a $45 fee to use a modernized alternative identity verification system, TSA Confirm.ID, to establish identity at security checkpoints beginning on February 1, 2026. Read Now

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.