Wireless Emergency Responder Technology (With Video)

In today's world, cellular phones, Global Positioning System (GPS), WiFi, and Bluetooth are the digital signals that connect us to friends, family, and colleagues while helping us find our location and map our routes.

Yet, despite the ubiquity of such devices, with few exceptions, today's firefighters still rely on 20th-century radios, whose outdated analog signals have trouble penetrating debris and concrete. When a firefighter heroically plunges into a smoke-filled building, tunnel, or forest, a UHF radio or, for that matter, even a GPS satellite signal won't follow. The firefighter vanishes from the map.

For a first responder, radio silence can be lethal.

That's why the Department of Homeland Security's (DHS's) Science and Technology Directorate (S&T) is combining two previously developed heatproof and waterproof wireless monitors with a newly developed technology. Working together, the three technologies could lead to a life-saving solution.

One device, the Geospatial Location Accountability and Navigation System for Emergency Responders (GLANSER), crams a microwave radio, a lightweight battery, and a suite of navigation devices into a tracking device the size of a paperback book. Back at the fire truck, GLANSER's signals are received and transmitted by a small, USB-powered base station plugged into a laptop. As firefighters move from room to room and floor to floor, the laptop display animates their every step.

A second device, the Physiological Health Assessment System for Emergency Responders (PHASER), can monitor a firefighter's body temperature, blood pressure, and pulse, relaying these vitals back to the base station. If a firefighter falls or faints, fellow firefighters can race in, quickly find him, and bring him to safety, guided by GLANSER.

Like the first cordless phones, GLANSER and PHASER transmit at 900 MHz—a frequency that can penetrate walls, given a decent-sized transmitter. But because of their portable size, the transmitters are extremely modest. Their signals could be stopped by a wall, or—in a wildfire—by a wall of trees, unless relayed by routers.

That presents an infernal challenge.

What's needed is a self-powered router that can take the heat. S&T is developing a tiny throwaway router, measuring one inch square by ½ inch thick, that's waterproof and heat-resistant up to 500° F. The Wireless Intelligent Sensor Platform for Emergency Responders, or WISPER, contains a two-way digital radio, antenna, and 3-volt lithium cel

Here's how it works: Each firefighter enters a burning building with five routers loaded into a belt-mounted waterproof canister. If a firefighter steps behind concrete or beyond radio range, the base station orders his canister to drop a "breadcrumb." The dropped routers arrange themselves into a network. If a router accidentally gets kicked down a stairwell or firehosed under a couch, the WISPER network will automatically reconfigure.

To an embattled firefighter, a handful of these smart "breadcrumbs" could spell the difference between life and death.

To extract the most life from the router's tiny battery, WISPER's designers turned to a simple, low-power communications protocol, ZigBee. ZigBee is tortoise-slow by design; it trades speed for battery life, telegraphing no more than 100 kilobits per second (kbps)—a rate that's more than 99 percent slower than WiFi.

"Throw in smoke, firehose mist, stairwells, and walls, and you're down to maybe 10 kbps. But that's fast enough to tell an incident commander the whereabouts (via GLANSER) and health (via PHASER) of every firefighter in the blaze," explains Jalal Mapar, WISPER's project manager in S&T's Infrastructure Protection and Disaster Management Division. "We're not streaming video that needs a lot of bandwidth, just vital signs and coordinates."

WISPER's router, dispenser, and tiny USB base station were developed by Oceanit Laboratories, Inc., of Honolulu, and the University of Virginia's Department of Computer Science under an S&T Small Business Innovation Research (SBIR) program.

In March 2011, Oceanit and UVA demonstrated WISPER for S&T at a FEMA office in Arlington, Virginia. Simulating a squad of firefighters, three router-toting researchers fanned out, dodging around corners, stepping down stairwells. In test after test, their signals stayed strong, even at a range of 150 feet.

Now that the SBIR project is proven to be a surefire success, S&T hopes a maker will step forward to produce the routers in volume. Once a commercial entity begins production, S&T's Test & Evaluation and Standards Office will evaluate a sample product to ensure that it meets the stated performance criteria and for consistency. S&T will also set industry standards so that other manufacturers will have a set of specifications for design and performance.

"We've demonstrated that it works," says Mapar. "Now we just need a private-sector partner to add fuel to the fire."

Featured

  • Report: 47 Percent of Security Service Providers Are Not Yet Using AI or Automation Tools

    Trackforce, a provider of security workforce management platforms, today announced the launch of its 2025 Physical Security Operations Benchmark Report, an industry-first study that benchmarks both private security service providers and corporate security teams side by side. Based on a survey of over 300 security professionals across the globe, the report provides a comprehensive look at the state of physical security operations. Read Now

    • Guard Services
  • Identity Governance at the Crossroads of Complexity and Scale

    Modern enterprises are grappling with an increasing number of identities, both human and machine, across an ever-growing number of systems. They must also deal with increased operational demands, including faster onboarding, more scalable models, and tighter security enforcement. Navigating these ever-growing challenges with speed and accuracy requires a new approach to identity governance that is built for the future enterprise. Read Now

  • Eagle Eye Networks Launches AI Camera Gun Detection

    Eagle Eye Networks, a provider of cloud video surveillance, recently introduced Eagle Eye Gun Detection, a new layer of protection for schools and businesses that works with existing security cameras and infrastructure. Eagle Eye Networks is the first to build gun detection into its platform. Read Now

  • Report: AI is Supercharging Old-School Cybercriminal Tactics

    AI isn’t just transforming how we work. It’s reshaping how cybercriminals attack, with threat actors exploiting AI to mass produce malicious code loaders, steal browser credentials and accelerate cloud attacks, according to a new report from Elastic. Read Now

  • Pragmatism, Productivity, and the Push for Accountability in 2025-2026

    Every year, the security industry debates whether artificial intelligence is a disruption, an enabler, or a distraction. By 2025, that conversation matured, where AI became a working dimension in physical identity and access management (PIAM) programs. Observations from 2025 highlight this turning point in AI’s role in access control and define how security leaders are being distinguished based on how they apply it. Read Now

New Products

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles.

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis.

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.