Researchers Find Way To Measure Effect Of Wi-Fi Attacks

Researchers from North Carolina State University (NC State) have developed a way to measure how badly a Wi-Fi network would be disrupted by different types of attacks – a valuable tool for developing new security technologies.

“This information can be used to help us design more effective security systems, because it tells us which attacks – and which circumstances – are most harmful to Wi-Fi systems,” says Dr. Wenye Wang, an assistant professor of electrical and computer engineering at NC State and co-author of a paper describing the research.

Wi-Fi networks, which allow computer users to access the Internet via radio signals, are commonplace – found everywhere from offices to coffee shops. And, increasingly, Wi-Fi networks are important channels for business communication. As a result, attacks that jam Wi-Fi networks, blocking user access, are not only inconvenient but have significant economic consequences.

Wang and her team examined two generic Wi-Fi attack models. One model represented persistent attacks, where the attack continues non-stop until it can be identified and disabled. The second model represented an intermittent attack, which blocks access on a periodic basis, making it harder to identify and stop. The researchers compared how these attack strategies performed under varying conditions, such as with different numbers of users.

After assessing the performance of the models, the researchers created a metric called an “order gain” to measure the impact of the attack strategies in various scenarios. Order gain compares the probability of an attacker having access to the Wi-Fi network to the probability of a legitimate user having access to the network. For example, if an attacker has an 80 percent chance of accessing the network, and other users have the other 20 percent, the order gain would be 4 – because the attackers odds of having access are 4 to 1.

This metric is important because a Wi-Fi network can only serve once computer at a time, and normally functions by rapidly cycling through multiple requests. Attacks work by giving the attacker greater access to the network, which effectively blocks other users.

“If we want to design effective countermeasures,” Wang says, “we have to target the attacks that can cause the most disruption. It’s impossible to prevent every conceivable attack.” So, one suggestion the researchers have is for countermeasures to focus on continuous attacks that target networks with large numbers of users – because that scenario has the largest order gain. Beyond that, network security professionals can use the new approach to assess a complicated range of potential impacts that vary according to type of attack and number of users.

The paper, “Modeling and Evaluation of Backoff Misbehaving Nodes in CSMA/CA-based Wireless Networks,” is forthcoming from IEEE Transactions on Mobile Computing and was co-authored by NC State Ph.D. student Zhuo Lu and Dr. Cliff Wang of the U.S. Army Research Office (ARO). The research was funded by the National Science Foundation and ARO.

Featured

  • Security Today Announces 2025 CyberSecured Award Winners

    Security Today is pleased to announce the 2025 CyberSecured Awards winners. Sixteen companies are being recognized this year for their network products and other cybersecurity initiatives that secure our world today. Read Now

  • Empowering and Securing a Mobile Workforce

    What happens when technology lets you work anywhere – but exposes you to security threats everywhere? This is the reality of modern work. No longer tethered to desks, work happens everywhere – in the office, from home, on the road, and in countless locations in between. Read Now

  • TSA Introduces New $45 Fee Option for Travelers Without REAL ID Starting February 1

    The Transportation Security Administration (TSA) announced today that it will refer all passengers who do not present an acceptable form of ID and still want to fly an option to pay a $45 fee to use a modernized alternative identity verification system, TSA Confirm.ID, to establish identity at security checkpoints beginning on February 1, 2026. Read Now

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.