Researchers Find Way To Measure Effect Of Wi-Fi Attacks

Researchers from North Carolina State University (NC State) have developed a way to measure how badly a Wi-Fi network would be disrupted by different types of attacks – a valuable tool for developing new security technologies.

“This information can be used to help us design more effective security systems, because it tells us which attacks – and which circumstances – are most harmful to Wi-Fi systems,” says Dr. Wenye Wang, an assistant professor of electrical and computer engineering at NC State and co-author of a paper describing the research.

Wi-Fi networks, which allow computer users to access the Internet via radio signals, are commonplace – found everywhere from offices to coffee shops. And, increasingly, Wi-Fi networks are important channels for business communication. As a result, attacks that jam Wi-Fi networks, blocking user access, are not only inconvenient but have significant economic consequences.

Wang and her team examined two generic Wi-Fi attack models. One model represented persistent attacks, where the attack continues non-stop until it can be identified and disabled. The second model represented an intermittent attack, which blocks access on a periodic basis, making it harder to identify and stop. The researchers compared how these attack strategies performed under varying conditions, such as with different numbers of users.

After assessing the performance of the models, the researchers created a metric called an “order gain” to measure the impact of the attack strategies in various scenarios. Order gain compares the probability of an attacker having access to the Wi-Fi network to the probability of a legitimate user having access to the network. For example, if an attacker has an 80 percent chance of accessing the network, and other users have the other 20 percent, the order gain would be 4 – because the attackers odds of having access are 4 to 1.

This metric is important because a Wi-Fi network can only serve once computer at a time, and normally functions by rapidly cycling through multiple requests. Attacks work by giving the attacker greater access to the network, which effectively blocks other users.

“If we want to design effective countermeasures,” Wang says, “we have to target the attacks that can cause the most disruption. It’s impossible to prevent every conceivable attack.” So, one suggestion the researchers have is for countermeasures to focus on continuous attacks that target networks with large numbers of users – because that scenario has the largest order gain. Beyond that, network security professionals can use the new approach to assess a complicated range of potential impacts that vary according to type of attack and number of users.

The paper, “Modeling and Evaluation of Backoff Misbehaving Nodes in CSMA/CA-based Wireless Networks,” is forthcoming from IEEE Transactions on Mobile Computing and was co-authored by NC State Ph.D. student Zhuo Lu and Dr. Cliff Wang of the U.S. Army Research Office (ARO). The research was funded by the National Science Foundation and ARO.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities 3

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises. 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3