An Emergency Network for Natural Disasters

Engineering researchers at the University of Arkansas are developing an emergency communications network that will maintain operation during natural disasters and provide critical warnings and geographic information to people affected by the disasters. The researchers are honing and testing the system now and expect to deploy a pilot network at the end of 2012.

The system, which the researchers call an emergency “mesh,” is self-sustainable and solar-powered, which means it would provide continuous, uninterrupted service even when the power grid or wireless communication systems are out of commission. Users would receive critical information on popular devices such as mobile phones, personal digital assistants, tablets and laptops.

“The ultimate goal of this project is to save human lives,” said Nilanjan Banerjee, assistant professor of computer science and computer engineering. “Deployment of this system could warn people to get out of harm’s way and could help emergency services personnel reach victims much faster. This last part is critically important because we know that many deaths occur in the minutes and hours after a disaster strikes. It is also important that the system communicates using popular, ubiquitous devices, because during these chaotic and highly stressful moments, people need to rely on something that is user-friendly and already familiar to them.”

The mesh can be thought of as a network of nodes that blanket a geographic area. Similar to servers, each solar-powered node contains data – geographic information – that can be downloaded to a user or communicated node-to-node, if necessary. The latter function is critically important in the event that a node or nodes fail due either to variability inherent in renewable energy or the likelihood of extreme environmental conditions in the aftermath of a natural disaster. If either or both happen, the mesh will automatically redistribute data to maintain service.

The geographic information will include a map, similar to the Google map service, that shows areas heavily affected by a disaster as well as routes around these areas.The system’s online demonstration displays a disaster area in red, while a green line shows an unobstructed or optimal route to an aid station or hospital.

Banerjee said several issues must be resolved before a practical and fully functioning system can be deployed. For sustainable operation on small solar panels, the nodes must operate on extremely low power yet still have enough power to send map-based information to users.

A hardware team led by Pat Parkerson, associate professor of computer science and computer engineering and co-principal investigator on the project, is developing and testing different hardware systems in an effort to strike this balance.

Also, a team led by Jack Cothren, associate professor of geosciences and director of the university’s Center for Advanced Spatial Technologies, is testing sophisticated GIS software that can function well on a device that has low power and limited resources. Another challenge is the geographical placement of nodes to ensure that optimal connectivity can be maintained regardless of topography.

To address all of these obstacles and test a combination of hardware and software, the researchers will deploy a 40-node mesh in downtown Fayetteville toward the end of 2012.

Banerjee said the technology could also apply to non-emergency scenarios, such as hiking in extreme wilderness areas or military operations in deserts or other remote locations.

The researchers received a $485,000 grant from the National Science Foundation to develop the system.

Featured

  • Video Surveillance Trends to Watch

    With more organizations adding newer capabilities to their surveillance systems, it’s always important to remember the “basics” of system configuration and deployment, as well as the topline benefits of continually emerging technologies like AI and the cloud. Read Now

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

  • ASIS International Introduces New ANSI-Approved Investigations Standard

    • Guard Services
  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.