Upgrading To A New Era

Keeping the ever-increasing demand for anytime, anywhere data under control

The recent eruption of mobile applications coupled with increasing IP-based data traffic on mobile devices is fueling the uptake of 4G technologies and driving the migration to faster data rates. In order to allow an all-IP-based services platform, service providers are upgrading existing networks and migration strategies. Both handset vendors and carriers are busy rolling out application portals in order to differentiate their offerings and provide better monetization and ARPU. The increasing trend for “anywhere, anytime” data technology is pushed by user mobility and subscriber need.

The move to mobile connectivity and mobile broadband, and more overall data traffic, is powering this expansion. Subscribers are dictating what applications they want to use and where they want to use them. This is pushing operators to move to an all-IP core by reducing network complexity and lowering costs.

With this much network transformation, the migration won’t happen overnight. Network operators still need to support a hybrid network for the foreseeable future, interconnecting next-generation systems and devices with the various types of existing platforms. The future of the network is becoming more complex, and the journey toward a converged all-IP network brings a whole new set of network performance and management guidelines to be implemented by IT organizations. Real-time network troubleshooting, monitoring and provisioning must be implemented strategically, as they are driven by the ever-important need to maintain and manage the subscriber experience.

Real-time monitoring of network traffic has proven to be particularly important for analyzing and diagnosing network performance and, consequently, the subscriber’s quality of experience (QoE).

Legacy Tools Fall Short of Real-Time Monitoring Needs

Performance and complexity problems are only made worse by fragmented monitoring approaches. The constant push for more efficient connectivity is leaving traditional approaches toward network monitoring incapable of managing network components on service provider and enterprise infrastructures. The accumulation of outdated network monitoring components coupled with the growing complexity of data on the network is causing several major problems.

Traditionally, placing a host of tools into the network was the solution to improving visibility of network performance. While this strategy does solve some problems, it introduces others. The inability to access a particular point in a network with multiple tools is often considered the biggest challenge IT managers face. This limitation, combined with the type of overhead management used in legacy monitoring schemes, creates a network “blind spot” and makes troubleshooting inefficient because there often are different sets of tools scattered across the network in different physical locations, each with individual management software that is inoperable with the software of other vendors.

Monitoring costs become increasingly expensive as network management becomes more inefficient and network engineers have limited accessibility to certain points in the network yet still have to manage an immense overflow of data. Reduced ROI and increased costs from the lack of fast and efficient troubleshooting is impacting revenues across the board—and adding performance and complexity problems.

Smarter Solutions: The Economics of Network Intelligence Optimization

Network operators—especially those in the telecom, enterprise or government industries—must carefully consider the price-performance, agility, diversity and intelligent capabilities of a traffic capture solution before making a decision. They must develop a complete and forward-looking strategy for network monitoring and management. There are a rising number of macro trends that, depending on future requirements, network operators should be mindful of when determining their network monitoring needs; technology development, “flattening the network” and purchasing economics are examples.

The continued expansion of IP only looks to accelerate the need to displace legacy systems with a next-generation network. With the network “flattening,” more distributed IP components in the network will be created, thus effectively generating more potential points of failure. A broader range of IP services will be rolled out as a result, further increasing the complexity of the network. Added complexity creates more opportunities for points of monitoring; the monitoring infrastructure should be “flat” and flexible across the whole network.

The Network Intelligence Optimization framework is laying the foundation for a smarter network monitoring solution. In order to withstand the increase in speed and complexities, the traffic-capture layer must continue to be utilized in the hardware because it is necessary to have a deeper awareness of packets and applications, along with a more dynamic handling of them.

With the need to improve service delivery while having tighter budget control, it is no surprise that network managers must now do more with less. However, the network monitoring optimization framework enables an organization to shift from a high initial CAPEX business model to a lower and variable CAPEX model when looking at the network monitoring component of the budget.

Network managers can do more in other areas such as network forensics, lawful intercepts and behavioral analysis now that there is less to worry about. With managed service providers (MSPs) having become mainstream, and primarily focused on monetization of QoS/QoE rather than on monitoring network elements and packets, the layered approach to network monitoring is essential to enabling the business model and differentiation in such network environments.

This article originally appeared in the March 2012 issue of Security Today.

Featured

  • Leveraging IoT and Open Platform VMS for a Connected Future

    The evolution of urban environments is being reshaped by the convergence of Internet of Things (IoT) technology and open platform VMS. As cities worldwide grapple with growing populations and increasing operational complexities, these integrated technologies are emerging as powerful tools for creating more livable, efficient, and secure urban spaces. Read Now

  • Securing the Future

    Two security experts sit down with Security Today’s editor in chief Ralph C. Jensen to discuss what they see emerging and changing over the next several years along with how security stakeholders can harness these innovations into opportunities. Read Now

  • Collaboration Made Easy Using a Work Management Platform

    Effective collaboration between security operators, teams and other departments is critical to the smooth functioning of organizations. Yet, as organizations grow in complexity, it becomes more difficult for teams to coordinate with each other. This is compounded by staffing shortages, turnover and ineffective collaboration tools. Read Now

  • Creating a Safer World

    Managing and supporting locks and door hardware within a facility is a big responsibility. A building’s security needs to change over time as occupancy and use demands evolve, which can make it even more challenging. Read Now

New Products

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.

  • Hanwha QNO-7012R

    Hanwha QNO-7012R

    The Q Series cameras are equipped with an Open Platform chipset for easy and seamless integration with third-party systems and solutions, and analog video output (CVBS) support for easy camera positioning during installation. A suite of on-board intelligent video analytics covers tampering, directional/virtual line detection, defocus detection, enter/exit, and motion detection.