Student Uses Graphene Foam to Detect Subtle Traces of Hazardous Gases Explosives

Fazel Yavari has developed a new sensor to detect extremely small quantities of hazardous gases. The Rensselaer Polytechnic Institute doctoral student harnessed the power of the world’s thinnest material, graphene, to create a device that is durable, inexpensive to make, and incredibly sensitive.

A student in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer, Yavari’s sensor opens the door to a new generation of gas detectors for use by bomb squads, defense and law enforcement officials, as well as in industrial settings. For this innovation, Yavari has been named the winner of the 2012 $30,000 Lemelson-MIT Rensselaer Student Prize. He is among the three 2012 $30,000 Lemelson-MIT Collegiate Student Prize winners announced recently.

“Innovating solutions to the challenges of tomorrow requires a certain kind of individual -- one who is ready and willing to take calculated risks and seize promising opportunities. These architects of change push forward the state of the art, and can affect progress on a global scale,” said Rensselaer President Shirley Ann Jackson. “Fazel Yavari, with his creative exploitation of graphene to create a promising new gas sensor, is a stellar example of such an architect of change. We congratulate him, and applaud all of the winners and finalists of the Lemelson-MIT Collegiate Student Prize for innovating a bolder, brighter future.”

Yavari is the sixth recipient of the Lemelson-MIT Rensselaer Student Prize. First given in 2007, the prize is awarded annually to a Rensselaer senior or graduate student who has created or improved a product or process, applied a technology in a new way, redesigned a system, or demonstrated remarkable inventiveness in other ways.

“This year’s Lemelson-MIT Collegiate Student Prize winners and finalists from MIT, RPI, and UIUC are helping to fulfill the country’s need for innovation. These students’ passion for invention and their ideas will improve people’s lives around the world,” states Joshua Schuler, executive director of the Lemelson-MIT Program. “We applaud their accomplishments that will also undoubtedly inspire future generations of inventors.”

Graphene-Powered Gas Detection

With his project, titled “High Sensitivity Detection of Hazardous Gases Using a Graphene Foam Network,” Yavari overcomes the shortcomings that have prevented nanostructure-based gas detectors from reaching the marketplace.

Detecting trace amounts of hazardous gases present within air is a critical safety and health consideration in many different situations, from industrial manufacturing and chemical processing to bomb detection and environmental monitoring. Conventional gas sensors are either too bulky and expensive, which limits their use in many applications, or they are not sensitive enough to detect trace amounts of gases. Also, many commercial sensors require very high temperatures in order to adequately detect gases, and in turn require large amounts of power.

Researchers have long sought to leverage the power of nanomaterials for gas detection. Individual nanostructures like graphene, an atom-thick sheet of carbon atoms arranged like a nanoscale chicken-wire fence, are extremely sensitive to chemical changes. However, creating a device based on a single nanostructure is costly, highly complex, and the resulting devices are extremely fragile, prone to failure, and offer inconsistent readings.

Yavari has overcome these hurdles and created a device that combines the high sensitivity of a nanostructured material with the durability, low price, and ease of use of a macroscopic device. His new graphene foam sensor, about the size of a postage stamp and as thick as felt, works at room temperature, is considerably less expensive to make, and still very sensitive to tiny amounts of gases. The sensor works by reading the changes in the graphene foam’s electrical conductivity as it encounters gas particles and they stick to the foam’s surface. Another benefit of Yavari’s device is its ability to quickly and easily remove these stuck chemicals by applying a small electric current.

The new graphene foam sensor has been engineered to detect the gases ammonia and nitrogen dioxide, but can be configured to work with other gases as well. Ammonia detection is important as the gas is commonly used in industrial processes, and ammonia is a byproduct of several explosives. Nitrogen dioxide is also a byproduct of several explosives, as well as a closely monitored pollutant found in combustion exhaust and auto emissions. Yavari’s sensor can detect both gases in quantities as small as 0.5 parts-per-million at room temperature.

Featured

  • Security Industry Embraces Mobile Credentials, Biometrics and AI, New Trends Report From HID Finds

    As organizations navigate an increasingly complex threat landscape, security leaders are making strategic shifts toward unified platforms and emerging technologies, according to the newly released 2025 State of Security and Identity Report from HID. The comprehensive study gathered responses from 1,800 partners, end users, and security and IT personnel worldwide, and reveals a significant transformation in how businesses are approaching security, with mobile credentials and artificial intelligence emerging as key drivers of innovation. Read Now

  • UK’s NHS Hospital Transforms Security with Edge-processing Camera System

    i-PRO Co., Ltd.,(formerly Panasonic Security), a manufacturer of edge computing cameras for security and public safety, recently announced that a leading teaching hospital in Northeast England, has enhanced its security infrastructure with i-PRO X-Series cameras integrated with Milestone’s XProtect Video Management Software (VMS). Read Now

  • Gun Violence Report Finds Retail Spaces, K-12 Schools Most Targeted

    ZeroEyes, the creators of the only AI-based gun detection video analytics platform that holds the U.S. Department of Homeland Security SAFETY Act Designation, today announced the release of its annual Gun Violence Report, offering a deep dive into the landscape of gun-related incidents across the United States. This analysis extends beyond mass fatality events, providing a more nuanced understanding of when, where, and why shootings occur. Read Now

  • Agentic AI Will Revolutionize Cybercrime in 2025 According to New Report

    Malwarebytes, a provider in real-time cyber protection, recently released its 2025 State of Malware report, which reveals insight into the emergence of agentic artificial intelligence (AI), plus the year’s most prominent threats and cybercrime tactics. The report details a significant uptick in the number of known ransomware attacks, the total value of ransoms paid in 2024, and how IT teams can address them. Read Now

New Products

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities