Researchers Building Computer System That Can Protect Itself From Online Attacks

In the online struggle for network security, Kansas State University cybersecurity experts are adding an ally to the security force: the computer network itself.

Scott DeLoach, professor of computing and information sciences, and Xinming "Simon" Ou, associate professor of computing and information sciences, are researching the feasibility of building a computer network that could protect itself against online attackers by automatically changing its setup and configuration.

DeLoach and Ou were recently awarded a five-year grant of more than $1 million from the Air Force Office of Scientific Research to fund the study "Understanding and quantifying the impact of moving target defenses on computer networks." The study, which began in April, will be the first to document whether this type of adaptive cybersecurity, called moving-target defense, can be effective. If it can work, researchers will determine if the benefits of creating a moving-target defense system outweigh the overhead and resources needed to build it.

Helping Ou and DeLoach in their investigation and research are Kansas State University students Rui Zhuang and Su Zhang, both doctoral candidates in computing and information sciences from China, and Alexandru Bardas, doctoral student in computing and information sciences from Romania.

As the study progresses, the computer scientists will develop a set of analytical models to determine the effectiveness of a moving-target defense system. They will also create a proof-of-concept system as a way to experiment with the idea in a concrete setting.

"It's important to investigate any scientific evidence that shows that this approach does work so it can be fully researched and developed," DeLoach said. He started collaborating with Ou to apply intelligent adaptive techniques to cybersecurity several years ago after a conversation at a university open house.

The term moving-target defense -- a subarea of adaptive security in the cybersecurity field -- was first coined around 2008, although similar concepts have been proposed and studied since the early 2000s. The idea behind moving-target defense in the context of computer networks is to create a computer network that is no longer static in its configuration. Instead, as a way to thwart cyber attackers, the network automatically and periodically randomizes its configuration through various methods -- such as changing the addresses of software applications on the network; switching between instances of the applications; and changing the location of critical system data.

Ou and DeLoach said the key is to make the network appear to an attacker that it is changing chaotically while to an authorized user the system operates normally.

"If you have a Web server, pretty much anybody in the world can figure out where you are and what software you're running," DeLoach said. "If they know that, they can figure out what vulnerabilities you have. In a typical scenario, attackers scan your system and find out everything they can about your server configuration and what security holes it has. Then they select the best time for them to attack and exploit those security holes in order to do the most damage. This could change that."

Creating a computer network that could automatically detect and defend itself against cyber attacks would substantially increase the security of online data for universities, government departments, corporations and businesses -- all of which have been the targets of large-scale cyber attacks.

In February 2011 it was discovered that the Nasdaq Stock Market's computer network had been infiltrated by hackers. Although federal investigators concluded that it was unlikely the hackers stole any information, the network's security had been left vulnerable for more than a year while the hackers visited it numerous times.

According to Ou, creating a moving-target defense system would shift the power imbalance that currently resides with hackers -- who need only find a single security hole to exploit -- back to the network administrators -- who would have a system that frequently removes whatever security privileges attackers may gain with a new clean slate.

"This is a game-changing idea in cybersecurity," Ou said. "People feel that we are currently losing against online attackers. In order to fundamentally change the cybersecurity landscape and reduce that high risk we need some big, fundamental changes to the way computers and networks are constructed and organized."

Featured

  • The Yellow Brick Road

    The road to and throughout Wednesday's and Thursday's ISC West was crowded but it was amazing. Read Now

    • Industry Events
    • ISC West
  • An Inside Look From Napco at ISC West

    Get a look into the excitement at ISC West 2025 from Napco. Hear from some of their top-tech executives live from the show floor. Read Now

    • Industry Events
    • ISC West
  • Upping the Ante

    I am not a betting man in terms of cards, dice, blackjack or that wheel with the black marble racing around the circumference of a spinning wheel, but I would bet on the success of ISC West this year. Read Now

    • Industry Events
    • ISC West
  • It's Show Time

    I am one of those people that likes to see things get bigger and better. As advertised, ISC West is going to be bigger (more exhibitors) and better (more attendees). It’s show time in Las Vegas. Read Now

    • Industry Events
    • ISC West

New Products

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.