Report Looks At How Much Radiation We Get From Airport Scanners

A new report by an independent task force commissioned by the American Association of Physicists in Medicine (AAPM), has found that people absorb less radiation from airport X-ray backscatter scanner than they do while standing in line waiting for the scan itself.

Measurements made on two scanners in active use at Los Angeles International Airport (LAX), as well as seven other scanners not in active use at the time of measurement, found that full-body scanners deliver a radiation dose equivalent to what a standard man receives every 1.8 minutes on the ground, or every 12 seconds during an airplane flight.

Put another way, an individual would have to receive more than 22,500 scans in a year to reach the standard maximum safe yearly dose determined by the American National Standards Institute and the Health Physics Society, according to AAPM Report No. 217, "Radiation Dose from Airport Scanners."

“This report represents a wholly independent review of the X-ray scatter airport scanners and is the first we know of to look at multiple scanners including those in actual airport use," said Christopher Cagnon, PhD, DABR, the chief of radiology physics at Ronald Reagan UCLA Medical Center and one of the lead authors of the new report. "We think the most important single take-away point for concerned passengers is to keep an appropriate perspective: the effective radiation dose received by a passenger during screening is comparable to what that same passenger will receive in 12 seconds during the flight itself or from two minutes of natural radiation exposure.”

Sources of Radiation

Natural sources of radiation on the ground include terrestrial sources such as radon in the air, cosmic radiation from space, and even the decay of potassium in the human body. Radiation doses are greater in the air because at cruising altitude, there is less atmosphere to shield passengers and crew from cosmic radiation.

To compare naturally occurring radiation with that emitted by airport scanners, AAPM convened a volunteer task force comprised of medical physicists from the University of California, Los Angeles and the University of California, Davis who donated their time. They measured the radiation delivered by Rapiscan Secure 1000 SP backscatter X-ray scanners, a model once commonly used in American airports but which the Transportation Security Administration has largely pulled from major airports due to passenger concerns over privacy.

T

he task force found that for a standard man -- approximately 178.6 cm (5'10") tall and 73.2 kg (161.4 pounds) -- one full-body scan delivered approximately 11.1 nanosieverts of radiation. (The "Sievert" is a common unit of radiation dose, and one "nanosievert" is one billionth of a sievert.)

On the ground, the same man receives approximately 3.11 millisieverts of radiation per year -- more than 10,000 times as much. The task force also found that the radiation dose a passenger receives during an average 2.84-hour plane flight -- 9.4 microsieverts -- is nearly 1,000 times greater than the dose delivered by one full-body scan.

"To our knowledge, all prior studies were contracted by the government and looked at a single scanner that was either of an older model or mocked up from component parts," Cagnon said. "A significant difference in our work is we were able to look at multiple working scanners both in the factory and in an international airport."

The AAPM report found that the LAX scanners emitted doses that were even lower than reported in the government contracted studies. The report also examines dose to skin and other superficial organs. To avoid any appearance of conflict of interest, this work was performed by independent physics experts volunteering their expertise, Cagnon added.

Featured

  • From the Most Visible to the Less Apparent

    The Cybersecurity and Infrastructure Security Agency (CISA) states “There are 16 critical infrastructure sectors whose assets, systems, and networks, whether physical or virtual, are considered so vital to the United States that their incapacitation or destruction would have a debilitating effect on security, national economic security, and national public health or safety or any combination thereof.” Read Now

  • Work Anywhere, Secure Everywhere: 2025 Tech Predictions

    Five years after the pandemic, organizations need a flexible work reset to stay productive and support any work arrangement. Despite the pandemic-fueled workplace shift that began five years ago, companies across industries and geographies continue to increase flexible work configurations. However, many tools adopted during COVID onset remain in place today, and they now need a reset to keep employees productive and secure regardless of location. Security leaders must re-evaluate existing practices and reinvest in zero trust security, passwordless environments, and automation adoption to improve efficiency and productivity. Read Now

  • Guiding Principles

    Construction sites represent a unique sector of perimeter security, especially amidst a steady increase in commercial construction. As in any security environment, assessing weaknesses and threats remains paramount and modern technology, coupled with sound access control principles, are critical in addressing vulnerabilities at even the most secure construction sites around the world. Read Now

  • Empowering 911

    In the wake of the tragic murder of UnitedHealth Group CEO Brian Thompson, media coverage flooded the airwaves with images, videos and detailed timelines of the suspect’s movements. While such post-incident analysis is not new, today’s 911 centers now have access to similar data in real-time. This technological evolution marks a pivotal transformation in emergency response, transitioning from analog calls to a digital ecosystem capable of saving more lives. Read Now

New Products

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis.

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.