Remote Monitoring of Critical Infrastructure

Quicker response times to disasters lead to less crisis situations

Remote monitoring of critical infrastructure used to be very difficult, but thanks to available technologies, this task can be achieved with a fraction of the resources required in the past.

Almost everyone has experienced a time when a major storm or other natural disaster significantly altered his or her life. Most of the time, these interruptions are temporary and only last a few minutes or a couple of hours, but there are times when lives are disrupted for days, weeks and even months. While these disasters cannot be eliminated, our ability to prepare for and respond to them can be greatly enhanced through remote monitoring of critical infrastructure.

Understanding Customer Needs and the Problem

Understanding the needs of the customer and the complexity of the problem are the first issues that need to be addressed, as they are critical to getting to the root causes of the problem(s). This exploration also helps the integrator fully communicate the various technologies that can be offered to the customer.

For example, in the case of a hydroelectric dam, a power company needed to figure out a way to see what was going on without physically having someone onsite, monitoring the situation 24 hours a day. Thus, the solution needed to work in complete darkness and in a wide variety of weather conditions, not just rain or shine but also in snow and ice. Taking into account various seasonal differences in a remote location is very important and can account for the success, or failure, of solving a customer’s issues.

Using a combination of surveillance cameras with wireless communications ultimately enabled this power company to remotely monitor the hydroelectric dam, enabling any change(s) in the structural integrity of the dam, the reservoir water level or the arrival of any intruders to be detected and appropriate actions taken.

When involved in a project that is in a remote area, it’s important to focus on all of the details and doing it right; in other words, “failure is not an option.”

The Solution and Installation

A number of possibilities were presented, but the power company and integrator decided it would be best to install a number of networked, IP-based surveillance cameras, with some being thermal, along with a combination of wireless communications to offer redundant paths that would ensure communications with the system would always operate. And because the location did not have power available, solar and wind power was used.

After initial site surveys were conducted, the list and placement of the camera systems were determined for the dam, taking into account future tree growth, sun position at various times of the year and allowances for significant snow accumulation. It was also anticipated that moon illumination would not be available at all times, making the thermal imaging cameras key.

Using multiple technology partners was important in ensuring the installation plan was covering all issues. Once the vision and plan was developed, the system came together and was thoroughly tested over a period of time, prior to final installation at the remote site.

Achievements

Using IP camera systems enabled the power company to monitor the system anytime and anywhere by simply logging into the system. To ensure successful communications, remote industrial cellular and 2-way satellite was used. If cellular communications failed, the system would automatically switch to satellite communications, and redundant uplinks from more than one location at the remote site ensured that communication would not be an issue.

While a no-fault tolerant system is perfect, using multiple layer redundancy can greatly reduce any interruption in system operation.

Once the system was completely installed and operating, multiple tests were conducted over the course of a few months to ensure functionality. Additionally, a maintenance plan was determined to make sure the system would remain operable for multiple years.

Analyzing the Installation

This hydroelectric dam monitoring system had many components that worked well and some that didn’t. It is always in the details, and it seems like it is the simple things that can be the resulting cause of major issues. For example, we learned that you can almost never have enough batteries or solar coverage to satisfy your “expected” power consumption.

In the midst of a large project like this, it is easy to lose touch with problems that need solutions, so communication with the customer is critical. There are always ways to improve your process; we consistently hope that we never make the same mistake twice.

The United States has some of the best infrastructure systems in the world, but many things in our culture have been taken for granted over the course of time. If we want to minimize the impact of natural disasters and protect our infrastructure from terrorism, remote infrastructure monitoring systems are excellent ways. Remote infrastructure monitoring allows us to make better choices in reacting to situations, which adds to our quality of life and helps ensure our society’s safety and security. After all, the quicker the response, the less severe the impact.

This article originally appeared in the October 2013 issue of Security Today.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3