Wrightstyle

Hospital Fire Safety in the USA

They are places of safety for newborns or elderly, and everyone in between. It’s why fire safety in healthcare facilities is so stringent and rigorously enforced.

They are places of safety for newborns or elderly, and everyone in between.  It’s why fire safety in healthcare facilities is so stringent and rigorously enforced. Safety regulations require fire risk assessments, fire safety policies and an operational strategy for implementing them––including rehearsed plans for the safe evacuation of patients, staff and visitors. That initial assessment starts with a close examination of the possible risks against hospitals’ occupants, structure, resources and continuity of operations, and there are a number of assessment methodologies to understand the potential threats, identify the assets to be protected, and how best to mitigate against risk.

Design teams take a multi-disciplinary approach to assessing hazards––from power failure to cyber attack, from civil disorder to fire and explosive detonation––and arrive at risk assessments that, hopefully, illuminate how that building should be designed, built and safely operated. But, the size and complexity of modern hospitals means that the risk of fire cannot be entirely avoided.  What’s important is that it is detected quickly, contained and then dealt with.

The history of fire safety in hospitals and elsewhere, in the USA and internationally, has been about “codifying by catastrophe”––only improving regulations once a fatal fire has taken place. 

The most significant fire, in terms of new regulation, was the St Anthony’s Hospital disaster in Effingham, Illinois in 1949, which killed over 70 people, including 11 newborn babies.

From that disaster came regulations on flame-retardant materials and effective barriers to contain fires at the source, and a new recognition that containment was an integral part in minimizing fire risk.

Fire regulations were again tightened following a 1961 hospital fire in Hartford, Connecticut, which was caused by a discarded cigarette that was dropped down a trash chute and 16 people died.  Other changes to regulation were new rules on smoking on healthcare premises, and further requirements on fire-retardant materials, including wallpaper and ceiling tiles were instated.

Underlining the importance of containment, an intern at the hospital said that those who lived had the doors to their rooms closed.  Those who died had their doors open.

However, the deadliest hospital fire in the U.S. took place at the Cleveland Clinic in May 1929 when over 120 people died, caused by nitrocellulose x-ray film being exposed to the heat of a light bulb.  This caused explosions and the creation of poisonous gas.

Following this, again codifying by catastrophe, Cleveland issued all fire fighters with gas masks and, nationally, new standards were introduced for the storage of hazardous materials, including x-ray film.

Among other tragedies was a 1950 fire at Mercy Hospital, Iowa, a unit for mental patients.  The fire, again perhaps caused by a discarded cigarette, claimed some 40 lives, and was able to spread rapidly in an old building.  Containment, again.

Although many lessons have been learned over the years, not all of them have been implemented in other parts of the world.  In a hospital fire in Russia last year, nearly 40 people died––in a wooden building that had been previously ordered to close because of fire safety concerns. A further 38 died last year in a separate hospital fire near Moscow.

They are places of safety for newborns or elderly, and everyone in between.  It’s why fire safety in healthcare facilities is so stringent and rigorously enforced. Most fires start with the smallest of incidents––commonly, a dropped cigarette or electrical short-circuit.  Others have a more bizarre cause; for example, an operating theatre at Ashford Hospital, England, had to be temporarily closed last year because a member of staff overcooked food in a microwave oven, filling corridors with smoke.

But, if a fire does break out, it needs to be suppressed––with a sprinkler system, for example––and contained, which is where specialist glazing systems have an important role to play. These systems can contain a fire for up to 120 minutes––long enough for safe evacuation and emergency response.

In a hospital environment, where ambient light has an important influence on staff morale and patient recovery, glazing systems can have both a functional and aesthetic purpose: helping in the recovery process and, if a fire breaks out, ensuring that it is contained at source.

Featured

  • Maximizing Your Security Budget This Year

    7 Ways You Can Secure a High-Traffic Commercial Security Gate  

    Your commercial security gate is one of your most powerful tools to keep thieves off your property. Without a security gate, your commercial perimeter security plan is all for nothing. Read Now

  • Making Safety and Security Intrinsic to School Design

    Public anxieties about school safety are escalating across the country. According to a 2023 Gallup report, 44% of parents fear for their child’s physical safety at school, a 10 percentage-point increase since 2019. Unfortunately, these fears are likely to increase if the incidence of school tragedies continues to mount. As a result, school leaders are now charged with two non-negotiable responsibilities. The first, as always, is to ensure kids have what they need to learn, grow, and thrive. Sadly, their second responsibility is to keep the children in their care safe from threats and physical danger. Read Now

  • The Power of a Layered Approach to Safety

    In a perfect world, every school would have an unlimited budget to help secure their schools. In reality, schools must prioritize what budget they have while navigating the complexities surrounding school security and lockdown. Read Now

  • How a Security System Can Enhance Arena Safety and the Fan Experience

    Ensuring guests have both a memorable experience and a safe one is no small feat for your physical security team. Stadiums, ballparks, arenas, and other large event venues are increasingly leveraging new technologies to transform the fan experience and maintain a high level of security. The goal is to preserve the integrity and excitement of the event while enhancing security and remaining “behind the scenes.” Read Now

Featured Cybersecurity

Webinars

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions. 3