Raising Concerns

Raising Concerns

City or municipal networks have pressing security issues

Raising Concerns City or municipal networks have pressing security issuesWireless transmission is usually a topic that raises many concerns in the security world. It seems common knowledge nowadays that a wireless network can be easily hacked, and private information can end up on the Internet or someone’s identity can be stolen. This is a major concern at the consumer level. When you walk into a computer store looking for the latest wireless 802.11 access point, security and encryption features are written all over the box, and you will most likely end up buying whatever seems to have the highest level of encryption. Most of today’s home access points have advanced encryption systems mainly to prevent a neighbor from stealing a Wi-Fi connection.

Security and encryption becomes even more relevant in a corporate network where even the smallest breach could lead to a major security threat and millions of dollars in damages. Different from home networks, corporate networks get attacked on a regular basis, so a high level of security is needed. The issue is even more relevant for city or municipal networks since they could be controlling some key operations that could heavily affect a city and its safety.

The issue of network safety and security is real and an important one to keep in mind; however, the key question that needs to be asked is how network security and encryption on wireless differs from a wired network. The truth is: It’s not very different. Wireless networks are not necessarily less secure than wired networks. What people don’t realize is that sometimes it is easier to tap into a switch in a cabinet than to play around with wireless. So, let’s review some of the key things that should be kept in mind to make a wireless network secure.

Transmission protocols. Wireless networks can be divided in two groups: ones that use a standardized transmission protocol and ones that use a proprietary transmission protocol. A standardized transmission protocol, for example, is 802.11, 802.15 or Zigbee. It is a protocol that follows certain characteristics to guarantee interoperability between devices made by different manufacturers. Standard Wi-Fi connectivity is probably the best example of this. When you go to Starbucks and connect to the wireless network, it doesn’t matter if you are using an Apple or a PC, an iPhone or Android, or even a Blackberry because they all have a Wi-Fi-compatible interface that allows you to connect to the network.

This is great for public Wi-Fi and any network that requires compatibility with multiple devices; however, this also poses a threat when it comes to security, as there are numerous devices that can communicate with your network.

Consequently, if security is your main concern, you should try to look for a wireless network that uses a proprietary transmission protocol because this will strongly limit the number of people who will be able to access it.

Authenticated routing. Regardless of the type of transmission protocol you are using, authenticated routing will prevent other wireless devices from interacting with your network. This is a key feature on the majority of wireless devices, but, before committing to any specific solution, you should know if it offers authenticated routing and understand how it does it.

Authenticated routing is enforced with a passphrase that is needed for two access points to communicate. WPA and WPA-2 are two of the most common authentication standards on a Wi-Fi network and provide a reasonable level of protection. It also is worth noting that WEP is no longer a secure method to prevent hackers from getting into your network and should be avoided at all costs. WEP can be cracked in less than five minutes using any laptop and software that is readily available on the web.

Control user impact. Most security breaches are, in fact, due to lack of knowledge on the user’s part. One of the most common accidents is caused by the so-called Rogue Access Point, a standard open 802.11 AP that is wired into the network by one of its users. This needs to be prevented as it could jeopardize the overall safety of the network and create a very easy entry point for hackers.

Detecting Rogue Access Points is a feature that is usually present on most enterprise networks. In home or small office networks where consumer-grade access points are used, though, this feature is not present, so attention should be given to other people attaching access points to the network.

Filter the MAC addresses. This allows control over which devices have access to the network, thus preventing another unknown device from being able to connect. This also prevents unknown devices, such as laptops or cellphones, from connecting to the wireless access point and is an effective way to keep tabs on who uses the network.

Encryption. Usually accomplished using a built-in encryption module on the wireless device or by adding a VPN box to the network, the goal of encrypting traffic is to add an additional level of protection to the data traveling on the network to prevent people from being able to understand the information being transmitted.

Most devices on the market use AES-128 bit or AES-256 bit encryption. The AES standard is one of the most widely adopted encryption systems due to its high level of security.

When activating encryption, it is important to keep in mind network performance. Given the large amount of data processing needed for encryption, it’s usually recommended to use a device with a dedicated encryption module or a separate device to avoid creating an overhead on the network.

Limit the range of the network. Limiting the power output and controlling the coverage area by using directional antennas are very effective ways to reduce the number of people that could have access to the network and might try to hack into it. More power is not always equivalent to a better connection due to issues such as co-location interference that might be present in a network with more than one access point that are close to each other. Controlling the output power of the access point can be easily done through the user interface with just a few clicks.

Wireless networks can be very secure and reliable transmission systems as long as certain rules are kept in mind and adhered to. In addition to upgrading to the latest technology and encryption systems, employees’ knowledge goes a long way in making any network more secure, regardless of whether it is wired or wireless.

This article originally appeared in the April 2014 issue of Security Today.

Featured

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

New Products

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities