Not All Drone Detectors are Created Equally

Not All Drone Detectors are Created Equally

How the Boston Marathon could have been better protected from drones

On a recent Monday morning, about 1 million spectators and 30,000 runners participated in the Boston Marathon, two years after the bombing tragedy that impacted so many people’s lives. An article from BostonHerald.com titled, “Commissioner: ‘No threats out there’ for race,” mentioned that the city had deployed a number of extra security measures, and one of those was the use of about 10 drone-detection units.

Protecting people from drones is a forward-thinking initiative for public security and is absolutely the right thing to do. Perhaps the detectors made people feel a bit more protected from a variety of amorphous threats, too. Unfortunately, the reality is that Boston’s drone-detection was less effective than it might have been. Let’s take a look at the situation.

The system DroneShield deployed uses audio detection—very similar to gunshot- detection systems that have been used in a number of large metropolitan areas. These normally provide suitable validation because there are many of these systems around, but detecting a drone is different and much more difficult. Gunshot detectors are focused specifically on the loud, sharp report of a shot—this is extremely loud and very simple to hear—a single pulse of sound.

Drones, however, are much more complex. Drones are quiet compared to a gunshot—most of them are visually and audibly noticeable within a few feet, but that drops off quickly as they get further away. The noise they make is so variable that each type of drone has a unique signature, and the drones themselves change their sound depending on whether they’re hovering, moving or even if their propeller blades get worn or nicked.

Hearing the drone is just part of the challenge—recognizing it in a noisy environment is almost impossible. Computer programs exist that are adept at matching sounds against audio patterns—this is how YouTube is able to detect unlicensed songs automatically on its site. But in those cases, the audio track is the only sound and is therefore isolated; if there are other sounds mixed in, it becomes more difficult to make a match.

For example, if you listen to a YouTube video in which someone is in public and a song can be heard mixed in with the regular day-to-day noise, you’ll likely find the song isn’t tagged—its audio is different enough that the pattern the software is looking for doesn’t match. This same problem exists when detecting drones in locations with plenty of ambient noise.

This weakness is noted by DroneShield’s founder, Brian Hearing, who says he’s eager to see how effectively the sensors filter out crowd and other noises.

He’ll be lucky to have heard anything but a clash of noises.

What about once the drone is detected? The DroneShield system comes with net guns that were given to police officers—the same types that scientists often use to capture birds for tagging. This seems like a great idea, except the range of the nets are generally 50 feet or less. Drones have to essentially be stationary and quite close to the officer to be caught.

Finally, how do cities go about protecting the public from malicious drones, and why do we care?

“We are detection experts and we take our job very seriously,” Hearing said. “We know how the various types of drone detectors work and don’t work. We have spent a great deal of time on this and, full disclosure, we sell a product called Drone Detector.

“Ours is a system that leverages multiple methods to detect if a drone is in use and, if so, what information can be determined about it. We use audio, too, but we amplify the detector’s ability by adding radio frequency and GPS location services so we can spot a drone lots further out—roughly 400 meters. Once we find the drone, we can find the operator.”

As drones change and evolve, people will need to continually assess detection systems to ensure that they work as effectively as possible. We encourage everyone interested in this space to do competitive evaluations and determine what works most efficaciously in their area and for their specific needs.

This article originally appeared in the June 2015 issue of Security Today.

About the Authors

Phil Wheat is a co-founder and CTO of Drone-Shield.

Zain Naboulsi is a co-founder, and is the CEO of DroneShield.

Featured

  • DHS Releases Framework for Safe, Secure Deployment of AI in Critical Infrastructure

    The Department of Homeland Security (DHS) released a set of recommendations for the safe and secure development and deployment of Artificial Intelligence (AI) in critical infrastructure, the “Roles and Responsibilities Framework for Artificial Intelligence in Critical Infrastructure” Read Now

  • Making the Grade with Locks and Door Hardware

    Managing and maintaining locks and door hardware across a school district or university campus is a big responsibility. A building’s security needs to change over time as occupancy and use demands evolve, which can make it even more challenging. Knowing the basics of common door hardware, including locks, panic devices and door closers, can make a difference in daily operations and emergency situations. Read Now

  • Choosing the Right Solution

    Today, there is a strong shift from on-prem installations to cloud or hybrid-cloud deployments. As reported in the 2024 Genetec State of Physical Security report, 66% of end users said they will move to managing or storing more physical security in the cloud over the next two years. Read Now

  • New Report Reveals Top Security Risks for U.S. Retail Chains

    Interface Systems, a provider of security, actionable insights, and purpose-built networks for multi-location businesses, has released its 2024 State of Remote Video Monitoring in Retail Chains report. The detailed study analyzed over 2 million monitoring requests across 4,156 retail locations in the United States from September 2023 to August 2024. Read Now

Featured Cybersecurity

Webinars

New Products

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions. 3

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3