Managing Risks - Security efforts are now defined to protect critical infrastructure

Managing Risks

Security efforts are now defined to protect critical infrastructure

Traditionally, electrical substation security was aimed only at preventing access to stop vandalism and improve safety. Today, however, security efforts have been redefined to address new threats in order to protect critical infrastructure. Substations are a critical element in the distribution of high-voltage electrical networks, and any disruption can have a severe negative impact on society.

With these new threats have come new government mandates that drive more security implementations. Fortunately, there are technologies available that can assist utilities in their compliance with the new requirements.

Today, utilities must address threats from multiple areas: theft, cyber terrorism and destructive attacks. For example, the higher price of copper has escalated many instances of stealing wires, pipes and tubing over recent years.

While in the past the electrical grid operated with concepts and mechanisms that relied on physical or manual resources, modern systems have become a technological, interoperating network of control and data acquisition. Electrical generation, a foundation of modern convenience that contributes significantly to higher quality of daily life, has grown to become a critical component of practical and economic stability—and therefore a major focus in national security, vulnerable to acts of terrorism. The challenges can be daunting.


Following the Northeast Blackout of 1965, the original North American Electrical Reliability Council was formed in 1968 by the Department of Energy to promote power transmission system reliability in the electrical utility systems of North America, as well as to provide guideline policies for their operation and accreditation. The North America Electric Reliability Corporation (NERC) succeeded the original Council in 2006 to revise the policies into enforceable standards in the United States and in some Canadian provinces.

NERC provides standards for implementing physical security at critical substations to protect personnel, prevent unauthorized access, and provide situational awareness for timely response and notification should circumstances dictate. NERC also manages a Critical Infrastructure Protection (CIP) program overseeing preparedness and response to serious incidents involving critical infrastructure. The CIP program originated in 1998 and was updated in 2003. It was designed to recognize that some critical infrastructure that is so vital, that the incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety.


The best way to approach modern physical security installations for electrical generation and substations is to conceptualize the facility as having different zones. Different technologies can be applied for each zone, which are then tied together through an integrated network with video verification.

The zone descriptions and associated technologies follow:


Dividing the property into different zones allows a security operator to utilize different detection components for each zone. The importance here is to develop a system based on an open platform technology that is designed to interconnect different components from a variety of vendors. No one vendor has all the pieces to the puzzle, so it is smart to be future-ready for new capabilities that are constantly coming on the market.

Depending on the property’s remoteness and critical importance, an operator may want different levels of physical security detection for different sites:


Long distances: To detect approaching personnel or vehicles at a long distance from the perimeter boundary (see Zone 0 – Down Range), compact, land-based radar systems combined with ground sensors could be used. These devices preventively notify the security operations center that a down-range object has been detected and can automatically direct IP video cameras to the location.

Within 100 meters: Closer to the perimeter boundary (see Zone 1 – near perimeter), detection technology such as thermal IP cameras, laser scanners for high contrast scenes, and IP surveillance cameras with or without embedded video analytics can be used to identify intrusions.

Thermal cameras are used to detect heat registration day or night. They can detect a couple degrees of variation from the background.

Laser scanners can detect movement day or night, with pinpoint directional control. Their real strength is in high-contrast situations, such as direct sunlight or sunlight reflections off water. The detection then directs PTZ cameras to the incident location.

IP surveillance cameras, whether PTZ or 360-degree digital PTZ, are easy to install. Camera coverage can be linked with sensors in other zones, and the video can be displayed on smartphone devices for remote and roving access.

Physical and virtual fences: The Zone 2 – Perimeter Line can be an actual fence or a virtual fence with lasers and ground sensors. For physical fences, there are a variety of sensor technologies, including fiber-optic cabling. The sensors can be tuned to detect vibrations from any sort of tampering with the fence material. This provides critical protection when combined with ground sensors that can detect digging activity.

Inside the fence: Passive infrared sensors use infrared light to detect object movement (see Zone 3 – Inside Perimeter Line). When combined with IP cameras and video analytics, this provides a complete set of detection tools.

Protecting infrastructure: If an intruder manages to get inside the compound (see Zone 4 – site infrastructure), there are two factors to consider: access to the building via secured doors and protection of the building exterior roof and windows. Door access should be protected with an access control system linked to the video system. Access control should include proper card enrollment, with security staff monitoring door/gate access to determine if unauthorized personnel are entering restricted areas.

The right substation security system will support interoperability between automatic sensor detection systems and verification with video surveillance systems that notify operators before an intrusion occurs. No one vendor can supply all the pieces to the puzzle, so the important factor is to ensure flexibility in the technology design. Be sure to choose a security system based on a video software management platform with open architecture in order to allow the exchange of information in real time between all the components for a systematic approach to detection, notification and response.

This article originally appeared in the December 2015 issue of Security Today.


  • Cloud Adoption Gives Way to Hybrid Deployments

    Cloud adoption is growing at an astonishing rate, with Gartner forecasting that worldwide public cloud end-user spending will approach $600 billion by the end of this year—an increase of more than 21% over 2022. McKinsey believes that number could eclipse $1 trillion by the end of the decade, further underscoring the industry’s exponential growth. Read Now

  • AI on the Edge

    Discussions about the merits (or misgivings) around AI (artificial intelligence) are everywhere. In fact, you’d be hard-pressed to find an article or product literature without mention of it in our industry. If you’re not using AI by now in some capacity, congratulations may be in order since most people are using it in some form daily even without realizing it. Read Now

  • Securing the Future

    In an increasingly turbulent world, chief security officers (CSOs) are facing a multitude of challenges that threaten the stability of businesses worldwide. Read Now

    • Guard Services
  • Security Entrances Move to Center Stage

    Most organizations want to show a friendly face to the public. In today’s world, however, the need to keep people safe and secure has become a prime directive when designing and building facilities of all kinds. Fortunately, there is no need to construct a fortress-like entry that provides that high level of security. Today’s secured entry solutions make it possible to create a welcoming, attractive look and feel at the entry without compromising security. It is for this reason that security entrances have moved to the mainstream. Read Now

Featured Cybersecurity

New Products

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3