Software Defined

Wide-area networking comes to physical security

As physical security technology continues to advance in both complexity and capability, it is increasingly bumping into and being influenced by other technology segments. Cyber security technologies are the first that come to mind, but recently, another true networking technology trend has arisen that is impacting physical security implementations of all kinds. Known as Software-Defined Wide Area Networking or SD-WAN, this connectivity technology is making physical security implementations easier, more flexible, more cost-effective and more reliable than ever before.

SD-WAN technology itself is an offshoot of Software-Defined Networking or SDN. Originally designed for highperformance data centers, SDN is a means of virtualizing important network functions as applications on commodity servers, thus giving IT a major boost in cost, complexity, and flexibility when building new infrastructure. Those same benefits have now grown beyond the data center to Small- and Medium-sized Enterprises (SMEs), as well as branch offices in the form of SD-WAN.

WANs are generally used to connect branch offices to a central corporate network or connect data centers together across distance. A SD-WAN moves the “configuration” of these networks into the cloud for IT to manage remotely and brings programmability to the IP connectivity. By doing so, this allows for remotely manageable devices to be installed at these “branch office” or remote locations, thus reducing the need for onsite expertise or management. Having the ability for the WAN links to adapt and work around to any network problems further simplifies the management and operation of the WAN network. This complete package makes for a very flexible and cost-effective means of connecting lots of geographically remote sites together in a cost-effective manner.

So how does this connect to physical security? Let’s start with the most obvious application for where this might be useful: video surveillance. Just think of the number of instances where a large organization has myriad sites, all with multiple cameras at a single site that require monitoring. Even with a single site that is large enough for several dozen cameras would be able to make use of an SD-WAN network. In the simplest terms, these SD-WAN devices will connect all cameras to a cloud network, enabling the organization to monitor all feeds from a single location, while also eliminating the need for a wired network connection. Not only does this consolidate the resources required for monitoring, but it also makes camera placement much more flexible, reaching locations unavailable with a physical wired feed. While wireless cameras are already seeing a great deal of deployment, SD-WANs are different in that they can bond multiple low-cast Internet connections together in order to create a single “bonded” connection that is many times more resilient and higherperforming at a fraction of the cost of a more expensive connection.

Let’s look at a hypothetical installation. Organizations can connect an SDWAN device to a remote PTZ camera system and the SD-WAN device will enable a live video feed and allow for control of the PTZ camera via the bonded Internet connection between the SD-WAN device field unit and the SD-WAN device server that is located at the organization’s primary data center.

The SD-WAN device server can be installed at any location with Internet connectivity such as the monitoring headquarters or a data center. Various field units can feed video to a command and control center that can control the pan, tilt and zoom controls remotely over the bonded connection. Most SD-WAN devices will accept an Ethernet or Wi-Fi feed from a PTZ camera, or PTZ camera gateway. This bonded IP tunnel between the PTZ camera(s) and the receive terminal transparently replaces the wired connectivity normally required for the PTZ camera.

Beyond the flexibility, some SD-WAN devices have the ability to consolidate multiple Internet streams together into a single “bonded” stream, thus increasing resiliency and performance while reducing the cost of the telecom networks required to connect these cameras. One can imagine the multiple security and law-enforcement applications where this kind of SD-WAN would be useful to an organization with budget issues in mind.

Beyond just physical security, this kind of flexible, resilient, and cost-effective network lends itself to almost any physical security application that relies on what we’ll term cyber-physical systems. A cyber-physical system (CPS) is a system of systems where there is a tight coupling between the computing component of the system and the physical components, underlying processes, and policies governing these systems.

This is an evolving area that is an important and distinct part of physical security infrastructure, but one we see growing every day with the rise of smart city infrastructure, smart homes with security services as a focus, and network-controlled security systems in enterprise environments, whether those run by the company itself or via a third-party security service provider. Physical security is already prevalent in almost all infrastructures, including transportation; chemical, water, and wastewater; healthcare; and energy. Now, network-based command and control systems are becoming the norm. And as a result, physical security organizations need to look to SD-WAN systems in order to ensure these new command and controls systems can be implemented in a way that gives them the best chance to succeed.

SD-WAN technology is just one of many points of continued convergence between IT security and physical security. The technology’s potential has almost all industry analysts bullish on its growth, with IDC predicting it will be a $6B market by 2020. For our future, it’s clear that we are moving toward “smart” infrastructures: smart power grid, smart buildings, smart bridges, smart cars, embedded medical devices, and robotic assistance for the elderly. All of these will require security solutions and those solutions will require connectivity that is flexible, cost-effective, and reliable. It seems that SD-WANs and physical security have a bright future together.

This article originally appeared in the November 2016 issue of Security Today.

Featured

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

New Products

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.