New System Uses Machine Learning to Scan Tweets for Security Flaws

New System Uses Machine Learning to Scan Tweets for Security Flaws

Machine learning and Twitter could be the future of catching security flaws and vulnerabilities early.

The future of security flaws and vulnerabilities could come down to the popular social media website, once known for telling your friends what you are having for lunch. Researchers are hoping to tap into the community of Twitter users who tweet about security vulnerabilities 24/7 by building a piece of free software that automatically tracks tweets to pull out hackable software flaws and rate their severity.

Researchers at Ohio State University, the security company FireEye, and research firm Leidos published a paper describing the new system that reads millions of tweets for mentions of software security vulnerabilities, and then, using their machine-learning-trained-algorithm, assesses the threat level they represent based on how they've been described.

The researchers found that Twitter can not only predict the majority of security flaws that will show up days later on the National Vulnerability Database, but that they could also use natural language processing to roughly predict which off those vulnerabilities will be give "high" or "critical" severity rating with better than 80 percent accuracy.

"We think of it almost like Twitter trending topics," says Alan Ritter, an Ohio State professor who worked on the research and will be presenting it at the North American Chapter of the Association for Computational Linguistics in June. "These are trending vulnerabilities."

Ohio State's Ritter cautions that despite promising results, their automated tool probably shouldn't be used as anyone's sole source of vulnerability data—and that at the very least, a human should click through to the underlying tweet and its linked information to confirm its findings. "It still requires people to be in the loop," he says. He suggests that it might be best used, in fact, as a component in a broader feed of vulnerability data curated by a human being.

Given the accelerating pace of vulnerability discovery and the growing sea of social media chatter about them, Ritter suggests it might be an increasingly important tool to find the signal in the noise.

"Security has gotten to the point where there's too much information out there," he says. "This is about creating algorithms that help you sort through it all to find what’s actually important."

About the Author

Sydny Shepard is the Executive Editor of Campus Security & Life Safety.

Featured

  • Freedom of Choice

    In today's security landscape, we are witnessing a fundamental transformation in how organizations manage digital evidence. Law enforcement agencies, campus security teams, and large facility operators face increasingly complex challenges with expanding video data, tightening budget constraints and inflexible systems that limit innovation. Read Now

  • Accelerating a Pathway

    There is a new trend touting the transformational qualities of AI’s ability to deliver actionable data and predictive analysis that in many instances, seems to be a bit of an overpromise. The reality is that very few solutions in the cyber-physical security (CPS) space live up to this high expectation with the one exception being the new generation of Physical Identity and Access Management (PIAM) software – herein recategorized as PIAM+. Read Now

  • Protecting Your Zones

    It is game day. You can feel the crowd’s energy. In the parking lot. At the gate. In the stadium. On the concourse. Fans are eager to party. Food and merchandise vendors ready themselves for the rush. Read Now

  • Street Smarts

    The ongoing acceptance of AI and advanced data analytics has allowed surveillance camera technology to shift from being a tactical tool to a strategic business solution. Combining traditional surveillance technology with AI-based data-driven insights can streamline transportation systems, enhance traffic management, improve situational awareness, optimize resource allocation and streamline emergency response procedures. Read Now

  • Midtown Manhattan Shooting Kills 4, Including NYPD Officer

    Four people were killed, including a NYPD officer, in a midtown Manhattan shooting on Monday. That’s according to CNN. Read Now

New Products

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.