5G Inherits Some 4G Vulnerabilities

Commercial 5G mobile networks are only just becoming available, with highly developed use cases for improving autonomous automobiles navigation and smart-sensor networks, and new vulnerabilities and security requirements are already emerging. Although 5G networks promise improvements in device authentication, traffic encryption, privacy protections for device IDs and credentials, many of the security protocols and algorithms for 5G are being ported from the previous 4G standard. That means these newer networks may suffer from many of the same vulnerabilities, at least in the short-term.

Indeed, researchers have found that cyber criminals can exploit device fingerprinting for targeted attacks as well as the possibility of man-in-the-middle offensives, even in 5G, according to Altaf Shaik, principal researcher at Kaitiaki Labs. Speaking on “New Vulnerabilities in 5G Networks” at the recent Black Hat USA conference, Shaik discussed multiple ways in which 5G networks could be compromised.

For example, since 5G networks are made up of base stations covering a specific area, they connect to a mobile edge cloud, which in turn connects to the core network. To get to a carrier network, 5G devices send device-capability data to the base station, which passes it on along the chain for eventual authentication to the core network. This data can incorporate include information about voice calling, SMS ability, vehicle-to-vehicle communication support, frequency bands used, and the device category as well as radio requirements.

At Black Hat, Shaik pointed out that in forthcoming 5G networks, the device capability information is sent to the base station before any security is layered onto the connection. Over-the-air security includes encryption of traffic from the endpoint to a base station; but since the device capabilities are transmitted prior to that taking effect, hackers can see this information in plain text. Hence, according to Shaik, 5G networks could still allow for a few types of attack:

Mobile network mapping (MNmap): Using real devices and commercial networks in Europe and the United States, Shaik's research team was able to sniff the information sent by the device in plain text and use it to create a map of devices connected to a given network. “We set up a fake base station to receive the capabilities of the devices,” Shaik said. “We categorized maker, model, OS, use case and version. This allows you to identify any cellular device in the wild. You can tell if a device is Android or iOS, if it’s IoT or a phone, if it’s a car modem, a router, a USB dongle, or a vending machine.”

That information paves the way for targeted attacks against a specific device or a whole class of devices, Shaik said. “You can plan a targeted attack against a certain kind of device – such as those used in field testing, or military devices. There’s also a privacy aspect here because you can link the [mobile subscriber ID] to a specific person.”

MiTM attacks: Man-in-the-middle attacks become relevant when hackers hijack the device information before security is applied -- as it is being sent to the base station. “You can take this data and modify the capabilities” of the device, Shaik said. Attackers could alter the frequency band information for a device to prevent handovers or roaming; or they could disable voice over LTE, which makes a phone revert to 3G/2G voice calling. These changes can also force the draining of IoT device batteries.

In his tests, Shaik reported that 22 out of 32 tested LTE networks worldwide were vulnerable to these types of attacks, with most of the tampering persisting for an average of seven days. He reported his findings to standards organizations and hopes to see fixes implemented by vendors next year.

“This is a problem, a fundamental issue that was ported from 4G,” Shaik said. “But in 5G, there are more use cases and more capabilities that define exactly what kind of device it is, making targeting that much easier.”

About the Author

Karen Epper Hoffman is a freelance writer based in the Seattle area.

Featured

  • Accelerating a Pathway

    There is a new trend touting the transformational qualities of AI’s ability to deliver actionable data and predictive analysis that in many instances, seems to be a bit of an overpromise. The reality is that very few solutions in the cyber-physical security (CPS) space live up to this high expectation with the one exception being the new generation of Physical Identity and Access Management (PIAM) software – herein recategorized as PIAM+. Read Now

  • Protecting Your Zones

    It is game day. You can feel the crowd’s energy. In the parking lot. At the gate. In the stadium. On the concourse. Fans are eager to party. Food and merchandise vendors ready themselves for the rush. Read Now

  • Street Smarts

    The ongoing acceptance of AI and advanced data analytics has allowed surveillance camera technology to shift from being a tactical tool to a strategic business solution. Combining traditional surveillance technology with AI-based data-driven insights can streamline transportation systems, enhance traffic management, improve situational awareness, optimize resource allocation and streamline emergency response procedures. Read Now

  • The Progress of Biometrics

  • Next-Gen AI for Smart Cities

    The future of smart city technology is not being shaped in Silicon Valley — it is taking root in Dubuque, Iowa. With a population of about 60,000, this mid-sized city has become a live testbed for AI-driven traffic management thanks to a unique public-private collaboration led by Milestone Systems. Project Hafnia demonstrates how cities can transform urban mobility and safety through Responsible Technology—without costly infrastructure overhauls. Read Now

New Products

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.