Understanding AI in Video Surveillance

Applying human intelligence to computer programs

Many video surveillance professionals have come across the terms Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). But what do those terms mean, and how do they affect Video Surveillance?

AI, MACHINE LEARNING AND DEEP LEARNING

AI is a term that loosely refers to applying human intelligence to computer programs or allowing programs to learn over time with the goal of producing better results as they learn. Machine Learning is a technique used to achieve a level of AI, and Deep Learning is an evolution of Machine Learning. In short, Deep Learning is an advanced, more sophisticated Machine Learning technique, and both are methods of achieving a level of AI.

Application in video surveillance. In video surveillance, video analytics uses Machine Learning and Deep Learning methods to identify objects, classify them, and determine their properties.

Whenever people receive new information, our brains attempt to compare the data to similar items in order to make sense of it. This comparative approach is the same concept that Machine and Deep Learning algorithms employ.

Machine and Deep Learning algorithms differ in how they are programmed to determine what constitutes a known object. Machine Learning requires more human intervention from a programmer to establish desired parameters in order to achieve the desired outcome. Deep Learning identifies object attributes independently and may consider characteristics the programmers would not.

Machine learning versus deep learning. What do Machine Learning and Deep Learning mean for Video Analytics? Both approaches describe programming methods where a system learns based on a data set. With Machine Learning, the attributes of the data a system looks for are usually preset, or corrected for, by human programmers. For instance, the system may be programmed to delineate an object that is taller than it is wide, with limbs moving in specified ways, and so on, and label this object a “person.”

Deep Learning is considered superior to Machine Learning, in part because the programmers may not recognize the most relevant criteria. Using the previous algorithm to identify a person, a seated and stationary person may not trigger an accurate detection.

With Deep Learning, the video analytic algorithms are fed an extensive data set representing an object. This step is called training, where the algorithm trains itself to recognize a type of object. For example, the system is fed thousands of images of people of varying genders, styles of clothing, ethnic backgrounds, images taken at different angles, and more.

The algorithm figures out attributes that are similar as well as dissimilar, and also determines how to weigh the relevance of those characteristics. After analyzing thousands of images, the algorithm may calculate the majority of images include a triangular- shaped object near the upper part of the image, with two darkened oval spots near its bottom, which we would think of as a nose on someone’s face. In fact, the algorithm may have identified many other such characteristics we wouldn’t think of.

Training the system is done by the developers of the software before it is used by a consumer. The process takes a substantial amount of computing power; much more than what is required to detect and classify objects when used in the field. The result is a file that is referenced by the system to determine if a detected object matches the classification.

Because the Deep Learning process uses the machine to determine object characteristics, it has led to analytics which can provide much more granular classification. For instance, older approaches may be able to detect a person, but Deep Learning based analytics can detect whether the person is a man, woman, or child. It may also be able to detect associated characteristics of an individual as well as vehicle type or make.

Learning over time. Typically, AI in video surveillance is trained at design time and, in some cases, does not get progressively “smarter” when used in the field. Deep Learning and Machine Learning do have this capability, however, and if used, can employ analytics which can learn over time.

Typical applications may include systems that determine what is normal in a scene. For instance, a school hallway experiences a rush of traffic about every 45 minutes between class periods. During that high traffic time, the traffic is dispersed and not concentrated in any particular area.

Furthermore, it is unusual for all the people to be moving at a very high speed. If the system detects an unusual concentration of objects, it could indicate a fight broke out. If all the people are running in the same direction outside of the usual inter-class period, it could indicate an emergency situation.

SMARTER SYSTEMS, BETTER RESULTS

Video surveillance systems produce huge volumes of data. Monitoring and filtering through such vast quantities of information makes the task of quickly identifying security incidents and finding evidence more difficult than ever.

Intelligent systems using Deep Learning can help us identify evidence much more promptly and analyze video in real-time to alert system operators of suspected events, providing better results for your security program.

This article originally appeared in the May/June 2020 issue of Security Today.

Featured

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

  • AI Used as Part of Sophisticated Espionage Campaign

    A cybersecurity inflection point has been reached in which AI models has become genuinely useful in cybersecurity operation. But to no surprise, they can used for both good works and ill will. Systemic evaluations show cyber capabilities double in six months, and they have been tracking real-world cyberattacks showing how malicious actors were using AI capabilities. These capabilities were predicted and are expected to evolve, but what stood out for researchers was how quickly they have done so, at scale. Read Now

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.