Today’s Essentials

Gigabit mmWave essential for today’s HD video security systems

Many of today’s video security systems feature 4K HD video to help human operators monitor and react better, but also to provide the best possible raw video data for the AI and machine learning programs that are used to continuously enhance operations. The transition from analog to IP and multi-sensor cameras, often mounted on rooftops, light poles and other “street furniture,” also is driving huge amounts of bandwidth across these networks.

As fiber cannot connect everything, private companies, municipalities and other public entities need Gigabit speed mmWave wireless connectivity to make it work properly. Wireless has long been used for security network operations, but today’s surveillance and “interactive” requirements are outstripping the capabilities of legacy systems, such as those operating in the 5 GHz bands.

Due to massive deployments of Wi-Fi, it is common to encounter extremely high levels of “RF noise,” which is likely to cause signal interruptions that result in video packet loss and other errors.

Therefore, operators are looking to extend fiber reach by using the higher bands, such as the 60 GHz V-band and the 70/80 GHz E-band, where the spectrum is essentially free of interference (now and for the foreseeable future) and there is plenty of bandwidth available. These two attributes combined create the perfect conditions to establish the Gigabit-speed connections to support these video requirements and illustrate once again how mmWave and existing fiber plant complement each other very well.

THE FOUR PILLARS

In terms of network requirements, advanced analytics based on AI is taking over the industry and it rests on four “pillars” in order to work properly. First, the cameras themselves are moving beyond pixels, with multi-sensor cameras increasing, and image processing split between the cloud and “the edge” (where the cameras are installed). Essentially, they are pushing the amount of video information beyond what the human eye can see and the brain can process.

Therefore, with AI-based analytic goals such as 95 percent or better detection rates and a false positive ratio of only 1 in 25,000, the three other pillars concern characteristics of the “feeds” or traf- fic traversing the network. In terms of signal quality, video resolution must be 1080P or better (as in the migration to 4K currently underway) and frame rates are at a minimum of 30 FPS and will soon be 60 FPS. As for transmission, zero packet loss is a must, and jitter must be tightly controlled. Lastly, reliability or network availability, must meet the “five 9s” standard at a minimum (which is defined as “carrier grade”) and the protection from the elements must meet the IP67 standard for outdoor operation.

Figure 1 shows the connectivity options for video surveillance. The attributes and comparisons there are self-explanatory, but one area might require a bit more explanation – the use of mmWave in mobile 5G, aka “5G NR.” First, the 5G NR mmWave bands do offer multi-Gig capacity, high-security and other benefits, but they are not the same spectrum as the V- or E-bands. These bands are licensed to mobile carriers and hence a security firm seeking to use this technology has to sign up with the carrier -- and pay carrier pricing. With data traffic from a single camera reaching the Terabits per month range, monthly fees could be massive.

THE LICENSE FEE

Contrast this to V-Band where the spectrum is license free in the United States and most countries. The E-Band is a lightly licensed frequency in most countries and can be done online. The license is generated quickly (within 24 hours typically) and the cost is usually low,for instance, only $75 per link for a 10 year license in the United States. Further, mmWave networks by their very nature, such as transmission beams, coupled with advanced encryption, ensure a secure network.

Network integrator firms who specialize in security, such as Blue Violet Networks, have recently deployed V- or E-band systems in settings such as large community colleges – large, for example, in terms of enrollment (more than 20,000) and size (a campus of 50 square acres or more). Community colleges do not have on-campus housing, which means a lot of traffic (automobile, bicycle, foot) transiting on and off.

Consequently, large parking lots and walking or bike paths to academic and other buildings occupy a significant portion of the campus space. This environment therefore presents a challenging security situation in terms of monitoring those affiliated with the college and those who are not.

In this case, the college (Irvine Valley College in California) decided to install multi-sensor cameras on lamp posts in parking lots and other common areas. The first phase called for 19 cameras, with a minimum connectivity requirement of 50 MBps for each. Fiber was considered but the administration deemed its deployment too disruptive and cost-prohibitive.

Other wireless technologies did not have sufficient aggregate bandwidth and had too much interference in this suburban location. Blue Violet Networks decided to install a network of 28 V-band radios, which would provide multi-Gigabit capacity. Including associated power equipment and enclosures and a control center installed in the “PD HQ,” the cost of this “fixed wireless” installation generated a savings of more than $500,000, as compared to a fiber or wireline approach.

The college then used this de facto savings to install 20 more cameras and more than 40 mmWave radios to create “blanket” coverage throughout the campus and enough “room” to accommodate future bandwidth requirements(including public Wi-Fi hotspots). Furthermore, these additional cameras and wireless equipment were installed in less than four weeks, as compared to an estimated four months and many times the cost of using fiber alone.

This article originally appeared in the October 2020 issue of Security Today.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.” 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises. 3