AI on the Edge

Are AI-based analytics best processed in the cloud, on the edge or on a dedicated server? The answer Is “It depends.”

Discussions about the merits (or misgivings) around AI (artificial intelligence) are everywhere. In fact, you’d be hard-pressed to find an article or product literature without mention of it in our industry. If you’re not using AI by now in some capacity, congratulations may be in order since most people are using it in some form daily even without realizing it.

When it comes to security, you have probably heard that AI is here to stay. It is the perfect assistant to security teams that cannot possibly watch all the video streams being generated by an organization 24/7/365. And it is certainly the only thing that can stay awake doing it. When we think of AI in physical security cameras, we mainly think about its ability to recognize and describe known objects such as people and vehicles.

That ability to recognize and describe unique attributes about an object such as a person’s shoe color, and whether they are carrying a bag or wearing a hat is extremely valuable to inform our analytics. The analytics algorithms benefit greatly the more a smart camera can tell them about the characteristics of the person who is standing outside a loading dock at 4 a.m. It is this marriage of AI-based object recognition and analytics that is revolutionizing our industry by helping security teams be more proactive to potential threats versus simply reacting to events that already happened.

AI will soon be commonplace in most every surveillance camera model offered for the simple reason that it makes such cameras smart, IoT devices. It’s a value-added feature that we’ll soon wonder how we ever lived without it since there are more cameras deployed than can be possibly monitored by human operators.

Not all AI is equal however, because there are different methods and models available to sort through the information that is harvested. One of the biggest differences is where the AI processing is done. Is it in the camera itself (also known as the edge) or is it on a server on premises? Maybe it is not on site at all and is being processed in the cloud? Where the information is processed can have a significant impact on the type of results obtained and the speed in which those results are available.

Edge, Cloud or Dedicated Servers? That is the question.
Running AI on the edge, in the cloud, or on dedicated servers each have their own set of advantages and considerations. Choosing between these options depends on the specific use case, processing requirements, and limitations of the infrastructure used to transport the data.

For example, it might be OK to send all your video streams to the cloud to run AI analytics for 10 cameras, but what about 100 or 500 cameras? With more raw video feeds travelling over the wide area network, the costlier it is going to be in terms of bandwidth and server load. Of course, the cloud is known for its scalability, but decompressing a compressed stream of video and running it through AI-based analytics all takes time which can lead to latency and delays when you need to react quickly to an important event where seconds count.

Benefits of Edge-based AI Analytics
Low latency. Being able to run AI-based analytics on the edge means analyzing footage the moment it hits the sensor, potentially even before it is compressed to a format like H.264 and sent to a VMS as a video stream. There is no faster way to detect a person or a vehicle and describe the behavior and attributes than doing it on the edge. If you have real-time applications where quick, proactive decision-making is necessary, processing on the edge is the answer. However, if we are only analyzing video footage post event, then the delays inherent to cloud-based analytics might acceptable.

Privacy and data security. Edge computing keeps sensitive data localized, enhancing privacy by minimizing the need to send data to external servers for processing. For example, it might not be legal to record audio along with the video surveillance in certain environments. Sound analytics can instantly notify operators of glass breaks, gun shots, and yells without recording any audio along with the video stream.

Bandwidth efficiency As mentioned previously, processing data on the edge reduces the amount of data that needs to be transmitted to the cloud. Since the amount of data increases rapidly as cameras are added, edge-based analytics can be especially beneficial in scenarios where network bandwidth is limited or expensive.

Offline capabilities. Edge devices can continue functioning even when they are disconnected from the cloud. This is important in situations where a reliable internet connection cannot be guaranteed, such as in remote areas or during network outages.

Regulatory compliance. Some industries, like healthcare or finance, have strict regulations regarding data privacy and residency. Running AI on the edge can help organizations comply with these regulations by keeping data within certain geographical boundaries.

Enhanced reliability. As edge-based processing evolves, distributed edge architectures can enhance system reliability. Even if one edge device fails, others can continue to operate independently, reducing the risk of complete system failures.

The Case for the Cloud
It is important to acknowledge that there are also challenges to consider when deploying AI on the edge, such as limited computational resources, the potential difficulty in maintaining and updating edge devices, and the need to manage and secure a network of IoT-style devices.

Cloud-based and dedicated server solutions offer advantages like scalability, centralized management, and access to powerful hardware, making them well-suited for applications that require extensive computational resources and where low latency is not a critical factor.

The Case for Hybrid Deployments
Using the edge for AI-based object detection and attribute harvesting cannot be beat, but when it comes to comparing that data for use in business and operational intelligence analysis, we frequently need more power.

Hybrid deployments can represent the best of both worlds since edge AI processing can send the lightweight, low bandwidth, resultant data to a dedicated server or cloud-based compute engine for further processing and comparisons to existing databases of information. In this way, hybrid edge/cloud/server deployments represent a powerful combination with no compromises when it comes to crunching big data and finding trends.

Let Your Unique Security Needs Dictate How You Use AI
Ultimately, the decision between edge, cloud, or hybrid deployments depends on factors like your unique latency requirements for real-time alerts, data privacy concerns, available network bandwidth, and the trade-offs between processing power and cost.

One answer seems common to all use cases: at minimum, use edge AI processing as much as possible. If more AI processing is required, consider sending the lighter weight results from the edge to a dedicated server in the cloud or on the ground. Edge-based computing will only get more powerful, but there will always be a limit to how much information the edge can hold when crunching through piles of big data.

Let your unique requirements be your guide.

This article originally appeared in the November / December 2023 issue of Security Today.

Featured

  • Security Today Announces The Govies Government Security Award Winners for 2025

    Security Today is pleased to announce the 2025 winners in The Govies Government Security Awards. The awards honor outstanding government security products in a variety of categories. Read Now

  • Survey: 60 Percent of Organizations Using AI in IT Infrastructure

    Netwrix, a cybersecurity provider focused on data and identity threats, today announced the release of its annual global 2025 Cybersecurity Trends Report based on a global survey of 2,150 IT and security professionals from 121 countries. It reveals that 60% of organizations are already using artificial intelligence (AI) in their IT infrastructure and 30% are considering implementing AI. Read Now

  • New Research Reveals Global Video Surveillance Industry Perspectives on AI

    Axis Communications, the global industry leader in video surveillance, has released its latest research report, ‘The State of AI in Video Surveillance,’ which explores global industry perspectives on the use of AI in the security industry and beyond. The report reveals current attitudes on AI technologies thanks to in-depth interviews with AI experts from Axis’ global network and a comprehensive survey of more than 5,800 respondents, including distributors, channel partners, and end customers across 68 countries. The resulting insights cover AI integration and the opportunities and challenges that exist with regard to security, safety, business intelligence, and operational efficiency. Read Now

  • SIA Urges Tariff Relief for Security Industry Products

    Today, the Security Industry Association has sent a letter to U.S. Trade Representative Jamieson Greer and U.S. Secretary of Commerce Howard Lutnick requesting relief from tariffs for security industry products and asking that the Trump administration formulate a process that allows companies to apply for product-specific exemptions. The security industry is an important segment of the U.S. economy, contributing over $430 billion in total economic impact and supporting over 2.1 million jobs. Read Now

  • Report Shows Cybercriminals Continue Pivot to Stealthier Tactics

    IBM recently released the 2025 X-Force Threat Intelligence Index highlighting that cybercriminals continued to pivot to stealthier tactics, with lower-profile credential theft spiking, while ransomware attacks on enterprises declined. IBM X-Force observed an 84% increase in emails delivering infostealers in 2024 compared to the prior year, a method threat actors relied heavily on to scale identity attacks. Read Now

New Products

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • Hanwha QNO-7012R

    Hanwha QNO-7012R

    The Q Series cameras are equipped with an Open Platform chipset for easy and seamless integration with third-party systems and solutions, and analog video output (CVBS) support for easy camera positioning during installation. A suite of on-board intelligent video analytics covers tampering, directional/virtual line detection, defocus detection, enter/exit, and motion detection.