Industry Insight

A Clear Detection

FOR passengers who've traveled through an airport recently, it's fairly obvious what might be improved at today's passenger checkpoints -- the long lines. All the while, time is ticking away for departing flights, and that's just focusing on the inconvenience factor.

A more fundamental challenge with today's airport checkpoints and one of paramount concern to those responsible for running and securing airports -- especially in light of the foiled terror plot in the United Kingdom that dominated the news for much of last month -- is reliably identifying potential threats.

A more fundamental challenge with today's airport checkpoints and one of paramount concern to those responsible for running and securing airports -- especially in light of the foiled terror plot in the United Kingdom that dominated the news for much of last month -- is reliably identifying potential threats. While security staff around the world labor admirably with the current state of technology, there are concerns about the limits of what it is able to accomplish.

A New Paradigm for Passenger Screening
GE's Checkpoint of the Future takes advantage of networking and remote monitoring to integrate airport screening operations, creating a comprehensive view of threats individual passengers may pose.

Beginning with a passenger's first interaction at the airport -- curbside bag check, ticket counter or boarding pass kiosk -- data from integrated sensors build an individual security picture for each passenger. Any indications of potential threats not only identify the passenger for further screening, but also alert additional sensors the passenger, or his or her bags, might encounter to provide more detailed scrutiny.

With the Checkpoint of the Future, when a passenger checks bags at curbside, goes to a ticket counter or uses a boarding pass kiosk, he or she presses a button to begin the desired transaction. Using the ItemiserFX trace detector, the passenger's finger is immediately analyzed for the possible presence of any explosives residues.

As the passenger reaches the checkpoint, carry-on baggage goes through a computed tomography-based scanner, giving it the same scrutiny checked bags are subjected to elsewhere at the airport to detect potential threats. While carry-on bags are screened, the passenger steps into a millimeter wave-based device and then onto a ShoeScanner. Together, the devices scan for the presence of any forbidden objects on the body or in the shoes. And, combined with the explosives detection scanning data from the ItemiserFX, a total security picture is created for each passenger. And the best part about the whole process: it all happens in about 20 seconds.

Advanced Technologies Take Off
Tested technologies, such as trace, incorporated into existing products -- in this case, the Itemiser FX finger-sampling device -- contributes to a new way of looking at checkpoint passenger screening.

Explosives in a variety of forms constantly give off microscopic particles. These particles transfer easily to people and also to surfaces that come into physical contact with either a contaminated person or item. Trace detection is based on the premise that when a person handles contraband substances -- explosives included -- tiny particles are left on their hands and bodies. These invisible particles leave identifiable traces on the hands, clothing and other articles touched by anyone who handles them.

Basically odorless, these particles become embedded in the skin with the same stickiness as fish oil, onions, gasoline and other substances difficult to wash away. Once contaminated, a person can unknowingly transfer trace particles to anything they touch. Thus, trace detection can help detect explosives where other methods, particularly those that rely on visual detection, may fail.

With the introduction of ItemiserFX, direct sampling of individuals becomes a possibility. A gentle touch of a fingertip to a reusable pad replaces the use of traps and swabs, and allows analysis of individuals for contraband substances. This direct transfer of threat substances to the instrument offers the possibility of improved detection. This same technology also is used in portals that give off gentle puffs of air to dislodge particles, which then are carried by the natural convection plume of warm air around a human body into a trace instrument that analyzes for the presence of explosives.

Advanced Computed Tomography (CT) technology is already seen in airports throughout the world where it's used for checked baggage inspection. GE Security produces its CTX explosives detection systems based on CT technology and hopes to leverage this experience -- and the related imaging technology -- to bring checked-bag-like levels of digital processing to the screening of carry-on bags.

Millimeter wave, a newer technology and one not yet in use at checkpoints, might be used to identify a more comprehensive array of potential threats carried on passengers' bodies than is possible with the current state of security technology. Active millimeter wave leverages common RF signals that reflect off of objects at low-signal levels. These signal levels are many times smaller than similar signals used by cell phones or garage door openers and meet known health standards, yet they offer the potential to identify difficult to detect threat objects.

Currently available millimeter wave products are largely manual in nature, requiring operators to review detailed images of each passenger screened. GE scientists are working to bring the same levels of automation to millimeter wave that are enjoyed by other advanced screening technologies, so that this promising technology can make a difference at the Checkpoint of the Future.

Quadrupole Resonance technology, or QR, the technology underlying GE's ShoeScanner, offers the potential to identify shoe-borne threats. Advanced Quadrupole Resonance technology uses RF magnetic fields to excite and detect specific atoms of explosive materials.

Looking to the Future
In the not-too-distant future, it's hoped that the security checkpoint will provide comprehensive threat detection, including the possibility of much enhanced detection of explosives. It's also hoped that it will offer a lower total cost of operation because of automation and increased screener productivity. And, just as important, it will provide a dramatically improved passenger experience.

This article originally appeared in the September 2006 issue of Security Products, pg. 14.

Featured

  • Secure Your Home During the Holidays

    The most wonderful time of the year can easily transform into a nightmare. Being vigilant, while still enjoying the holiday season, is possible. The holiday season is the perfect time to start implementing security measures to protect one’s home and ensure security while out and about. Read Now

  • Five Cybersecurity Trends Predictions for 2024

    According to Cybersixgill, threat research experts, AI’s evolution will continually improve both organizations’ cyber defense efforts and cybercriminal activities. At the same time, increasingly complex regulatory requirements, continued consolidation of cybersecurity tools, a widening attack surface, and heightened global geopolitical issues will all play a significant role in driving the direction of cybersecurity. Read Now

  • AI on the Edge

    Discussions about the merits (or misgivings) around AI (artificial intelligence) are everywhere. In fact, you’d be hard-pressed to find an article or product literature without mention of it in our industry. If you’re not using AI by now in some capacity, congratulations may be in order since most people are using it in some form daily even without realizing it. Read Now

  • NSA Report Focuses on How to Protect Against Evolving Phishing Attacks

    The National Security Agency (NSA) and U.S. partners have released a new report describing the latest techniques in phishing attacks and the defenses organizations can deploy against them. Read Now

Featured Cybersecurity

New Products

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame. 3

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation. 3

  • ComNet CNGE6FX2TX4PoE

    The ComNet cost-efficient CNGE6FX2TX4PoE is a six-port switch that offers four Gbps TX ports that support the IEEE802.3at standard and provide up to 30 watts of PoE to PDs. It also has a dedicated FX/TX combination port as well as a single FX SFP to act as an additional port or an uplink port, giving the user additional options in managing network traffic. The CNGE6FX2TX4PoE is designed for use in unconditioned environments and typically used in perimeter surveillance. 3