Researchers Improve RFID Tag Security

Three scientists at the University of Massachusetts Amherst have devised an inexpensive and efficient way to improve security for RFID tags, the wireless devices that allow consumers to pay for their gas or access buildings without pulling out their wallets. The breakthrough, which uses variations in the tags’ existing memory cells, will make their stored information more secure while retaining their small, convenient size.

In July, Wayne Burleson of electrical and computer engineering, and Kevin Fu of computer science, along with electrical and computer engineering graduate student Dan Holcomb presented their results at the annual Conference on RFID Security, which were later published in the society’s proceedings. The multi-disciplinary collaboration among cryptographers and engineers, called the RFID Consortium for Security and Privacy (RFID-CUSP, http://www.rfid-cusp.org), is part of a research initiative funded by a $1.1 million grant from the National Science Foundation to improve security for the wireless “smart tag” gadgets.

“We believe we’re the first to show how a common existing circuit can both identify specific tags and protect their data,” said Burleson. “The key innovation is applying the technology to RFID tags, since they’re such tiny devices with very small memories.”

RFID tags are already used in countless identification and tracking methods, such as passports and inventory control. A common use of these devices is in access control systems, such as corporate or government ID cards, that allow access to buildings and rooms through a tiny radio frequency transmitter. Embedded in these tags are passive systems that respond automatically to electromagnetic fields produced by radio antennas trying to read the tags’ memory. This technology, while convenient, can be susceptible to breaches in security; for example, credit cards that use RFID technology are vulnerable to thieves who, with the appropriate equipment, can read information from the card without the victim ever taking it out of a pocket.

The team’s new security method uses the concept of random numbers, which are used to encrypt data sent by the tags so that each message transmitted is unique. Machines with the right hardware and software, such as your desktop computer, can easily produce a string of random numbers; however, the tiny circuitry of a matchbook-sized RFID tag isn’t built for that function. The UMass Amherst researchers’ work eliminates the need for specific machinery dedicated to the task. Using specialized software, the tag readers will be able to extract unique data from the tags’ existing hardware.

“An RFID tag has the unusual property that it’s powered up and down by an external source because it doesn’t have a battery,” Burleson said. “We exploit the powering up process and allow the tag’s physical properties to do the work.”

The method relies on the fact that the memory cells within an RFID tag lose all the information stored in them when a power supply is removed. But just when a tag is powered up -- in this case, by the receiver of the transmission -- some of its memory cells will fluctuate randomly between two binary states before settling onto a stable value. This effect is used to create a series of numbers that allow the RFID to authenticate itself to a reading device.

Since each tag varies slightly from all the others in some ways, such as its threshold voltages and minor dissimilarities in hardware, the variations in each tag’s memory cells are also enough to be used to identify each individual tag. The tag’s producer can use this property to distinguish between tags and detect illicitly cloned tags.

“There’s enough complexity in each one that can give it a unique fingerprint,” said Burleson. Burleson emphasized that the work is still preliminary and that some issues remain unresolved, including the effects of temperature, noise and data retention on the ability to generate quality random numbers and tag identifications. A new larger collaboration between the departments, called Trusted Reliable Embedded Networked Devices and Systems (TRENDS), will explore these issues in the area of embedded security.

Featured

  • Security Industry Association Announces the 2026 Security Megatrends

    The Security Industry Association (SIA) has identified and forecasted the 2026 Security Megatrends, which form the basis of SIA’s signature annual Security Megatrends report defining the top 10 factors influencing both near- and long-term change in the global security industry. Read Now

  • The Future of Access Control: Cloud-Based Solutions for Safer Workplaces

    Access controls have revolutionized the way we protect our people, assets and operations. Gone are the days of cumbersome keychains and the security liabilities they introduced, but it’s a mistake to think that their evolution has reached its peak. Read Now

  • A Look at AI

    Large language models (LLMs) have taken the world by storm. Within months of OpenAI launching its AI chatbot, ChatGPT, it amassed more than 100 million users, making it the fastest-growing consumer application in history. Read Now

  • First, Do No Harm: Responsibly Applying Artificial Intelligence

    It was 2022 when early LLMs (Large Language Models) brought the term “AI” into mainstream public consciousness and since then, we’ve seen security corporations and integrators attempt to develop their solutions and sales pitches around the biggest tech boom of the 21st century. However, not all “artificial intelligence” is equally suitable for security applications, and it’s essential for end users to remain vigilant in understanding how their solutions are utilizing AI. Read Now

  • Improve Incident Response With Intelligent Cloud Video Surveillance

    Video surveillance is a vital part of business security, helping institutions protect against everyday threats for increased employee, customer, and student safety. However, many outdated surveillance solutions lack the ability to offer immediate insights into critical incidents. This slows down investigations and limits how effectively teams can respond to situations, creating greater risks for the organization. Read Now

New Products

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.