DHS Hoping To Understand, Limit Impact Of Chemical, Biological Agent Release In Subway Systems

Millions of commuters in America rely on subway systems to travel. This makes mass transit an attractive target for terrorists, as proven by the Tokyo subway terrorist attack in 1995 in which sarin was released on several train cars, killing 12 and injuring thousands.

To limit the impact of similar attacks and determine the best actions to take during a chemical or biological agent release, scientists are investigating how these contaminants would travel through a subway system’s underground tunnel network.

The Department of Homeland Security Science and Technology Directorate is studying the way gasses and particulates behave by conducting a series of airflow tests in subway systems.

Boston’s Massachusetts Bay Transportation Authority subway was host to the latest experiment in December. DHS S&T conducted controlled releases of harmless substances – sulfur hexafluoride and perfluorocarbon  gas, as well as sodium fluorescein particles – to simulate a chemical or biological agent’s movement, according to Teresa Lustig, the program manager leading the study for DHS S&T’s Chemical and Biological Division. Scientists released the gases and particles into the MBTA subway system during a seven-day test.

The data from the testing will help researchers test and refine models that predict how chemical and biological agents spread through subway systems as well as how they escape into the streets above.

The results could help first responders act more effectively to evacuate subway stations, adjust ventilation, and modify train movements to save lives after an attack or accidental release of hazardous substances.

“We need to better understand airflow and how that affects transport so that we can then better develop technologies to support [chemical and biological] detection, as well as planning and response strategies, in case there is a terrorist attack,” Lustig said.

Researchers from Argonne National Laboratory, Lawrence Berkeley National Laboratory, ICx Technologies, the Defense Science and Technology Laboratory of the United Kingdom, and Chemistry Centre of Australia tracked the tracer gases and particles in the MBTA system. About 40 gas samplers and more than 25 particle counters placed throughout the underground system monitored the concentration of the tracer gases and particles DHS S&T used to simulate a chemical or biological attack, said David Brown, a research scientist from Argonne National Laboratory, which designed and led the test.

Preliminary findings from the December 2009 tests showed that chemicals and biological agents can spread quickly through a subway system, according to Lustig. There are differences in how these materials transport in the underground subway environment. The particles simulating biological agents tend to deposit on surfaces and were less likely to round corners than gases.

MBTA Transit Police plan to use the airflow test’s findings to enhance strategic response and preparedness, said Deputy Chief Lewis Best. Understanding how substances travel through the subway’s five lines will help the MBTA Transit Police fine tune evacuation plans to protect the subway’s more than 1.3 million daily riders. Other transit systems will be able to use the airflow models researchers create from the data to draft their own preparedness plans.

The data also will help scientists design more effective chemical detectors to alert police quickly to any spill or attack.

“It’s obviously going to help scientists and researchers develop next-generation detection systems,” Best said.

Researchers plan to combine the MBTA airflow test data with findings from similar tests conducted in the Washington D.C. Metro system in December 2007 and August 2008. Lustig explained that the tests will allow scientists to see if there is a difference between the way chemicals travel through an older subway system, like Boston, and a newer one, like the Washington D.C. Metro.

Scientists plan to return to Boston to repeat the testing in August  to determine if there is any seasonal variation in airflow. The researchers will complete a final report on the subway tests in late 2010 or early 2011, Brown said. The data will not be made public for security reasons, but it will be provided to the Transportation Security Administration and first responders, according to Lustig.

Researchers had developed models for subway airflow, but these experiments were the first to examine whether those predictions held true during a system-wide, rush-hour test, according to Brown. Previous models indicated chemicals would spread quickly through a subway system.

The MBTA and D.C. Metro tests will help first responders judge how serious a threat chemical and biological releases are and determine how best to prepare for them.

“They know these data are going to help them plan for not only terrorism-type events but accidental spills and fire and smoke events,” Brown said. “This type of data is very useful for them to gauge vulnerabilities in their system.”

 

Featured

  • Data Driven, Proactive Response

    As cities face rising demands for smarter policing and faster emergency response, Real Time Crime Centers (RTCCs) are emerging as essential hubs for data-driven public safety. In this interview, two experts with deep field experience — Ross Bourgeois of New Orleans and Dean Cunningham of Axis Communications — draw on decades of operational, leadership and technology expertise to share how RTCCs are transforming public safety through innovation, interagency collaboration and a relentless focus on community impact. Read Now

  • Integration Imagination: The Future of Connected Operations

    Security teams that collaborate cross-functionally and apply imagination and creativity to envision and design their ideal integrated ecosystem will have the biggest upside to corporate security and operational benefits. Read Now

  • Smarter Access Starts with Flexibility

    Today’s workplaces are undergoing a rapid evolution, driven by hybrid work models, emerging smart technologies, and flexible work schedules. To keep pace with growing workplace demands, buildings are becoming more dynamic – capable of adapting to how people move, work, and interact in real-time. Read Now

  • Trends Keeping an Eye on Business Decisions

    Today, AI continues to transform the way data is used to make important business decisions. AI and the cloud together are redefining how video surveillance systems are being used to simulate human intelligence by combining data analysis, prediction, and process automation with minimal human intervention. Many organizations are upgrading their surveillance systems to reap the benefits of technologies like AI and cloud applications. Read Now

  • The Future is Happening Outside the Cloud

    For years, the cloud has captivated the physical security industry. And for good reason. Remote access, elastic scalability and simplified maintenance reshaped how we think about deploying and managing systems. But as the number of cameras grows and resolutions push from HD to 4K and beyond, the cloud’s limits are becoming unavoidable. Bandwidth bottlenecks. Latency lags. Rising storage costs. These are not abstract concerns. Read Now

New Products

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis.