Researchers Looking At Optimal Dynamic Detection Technology For Next-Generation Bomb Identification

For anyone who has spent a significant amount of time in an urban setting, the scene of a bomb squad responding to a report of a suspicious package might be all too familiar. But just how is it determined that the lunchbox left under the park bench is just leftovers  --  or a lethal weapon? The most common way is spectroscopy.

"Spectroscopy is good, but it only gets you so far," said Eric Houser, a program manager in the Explosives Division of the Department of Homeland Security's Science and Technology Directorate (S&T). The wave of the future may lie in a technology called optimal dynamic detection (ODD), which overcomes many of spectroscopy's limitations.

Spectroscopy uses the color spectrum to shed light on a package's makeup. Since it uses visible light only, spectroscopy can't see through a lunchbox, but what it can see is microscopic residue on the box's outer layer, which can provide telltale clues about what's inside.

Using spectroscopy, bomb squad personnel will beam a laser at the package, then compare the reflected "light signature" -- an optical fingerprint -- against a library of known signatures for chemical compounds, such as nitroglycerin. If there is nitro inside, chances are that some of it will be found in the package's residue.

This method presents two problems. First, there's distance. Many threat detection methods require either the person or the detector to be physically near the bomb, making spectroscopy extremely dangerous.

Second, approaches like spectroscopy, which rely on reflected light, often are not sensitive or selective enough, especially in the real world where chemical signatures may overlap or be contaminated. Think of light signatures as fingerprints. Capturing a fingerprint from a clean surface is not especially difficult. But in real life, surfaces are anything but clean, and dust, grease, or even ink stains can cause a backpack or lunch pail to bear small deposits of several different chemicals, each with a unique optical fingerprint. To minimize false alarms, a detector must be both sensitive and selective.

The ODD project began in the summer of 2008, when researchers from Princeton University and Los Alamos National Laboratory pitched the concept to S&T. As a result, the Directorate signed a contract to fund research at the two labs for a proof of concept. A year and a half later, after several rounds of successful tests, researchers have successfully demonstrated the science of ODD. The goal now: to develop a portable prototype in the next three years that can be field-tested.

But the real eye-opener is the science.

"At this risk of oversimplifying, this is quantum control applied to explosives detection," Houser saud,

Here's how ODD works:

A bomb technician beams a "raw" laser pulse toward a suspicious bag, looking for a specific explosive.

The pulse passes through an electro-optical filter, gaining clarity as it is bent through lenses, reflected by mirrors and amplified by chips. When the technician tunes the laser to a new frequency, the filter reshapes the laser's pulse. As it is bent, reflected, and electronically processed, the pulse changes amplitude.

The shaped pulse hits the chemical environment around the lunchbox and excites the energy state of the material of interest, emitting an energy "signature." Since the pulse was precisely defined, so is the signature.

A second laser, called an analyzing "probe," is beamed through the excited molecules, measuring its spectrum. The probe beam passes into an electro-optical detector stationed on the other side of the target.

The pulse laser's final shape is stored and analyzed. If the signature looks like that of an explosive, it can conclusively be traced to the explosive molecules that emitted it, which may be found on the bag's fabric or zipper.

In this way, ODD reduces background signals, which interfere with the identification process of a potential bomb, and amplifies the return signal, which illuminates the threat. The light energy going in is precisely defined, which makes it easier than spectroscopy to read the energy coming out.

"In evaluating a potential bomb, you're looking for a needle in a haystack," explains Houser. "ODD helps bring the needle to the forefront."

In a word, ODD offers control. And with greater control comes greater accuracy. The result may well save precious minutes when a minute saved can means scores of lives also saved.

 

Featured

  • A Look at AI

    Large language models (LLMs) have taken the world by storm. Within months of OpenAI launching its AI chatbot, ChatGPT, it amassed more than 100 million users, making it the fastest-growing consumer application in history. Read Now

  • First, Do No Harm: Responsibly Applying Artificial Intelligence

    It was 2022 when early LLMs (Large Language Models) brought the term “AI” into mainstream public consciousness and since then, we’ve seen security corporations and integrators attempt to develop their solutions and sales pitches around the biggest tech boom of the 21st century. However, not all “artificial intelligence” is equally suitable for security applications, and it’s essential for end users to remain vigilant in understanding how their solutions are utilizing AI. Read Now

  • Improve Incident Response With Intelligent Cloud Video Surveillance

    Video surveillance is a vital part of business security, helping institutions protect against everyday threats for increased employee, customer, and student safety. However, many outdated surveillance solutions lack the ability to offer immediate insights into critical incidents. This slows down investigations and limits how effectively teams can respond to situations, creating greater risks for the organization. Read Now

  • Security Today Announces 2025 CyberSecured Award Winners

    Security Today is pleased to announce the 2025 CyberSecured Awards winners. Sixteen companies are being recognized this year for their network products and other cybersecurity initiatives that secure our world today. Read Now

  • Empowering and Securing a Mobile Workforce

    What happens when technology lets you work anywhere – but exposes you to security threats everywhere? This is the reality of modern work. No longer tethered to desks, work happens everywhere – in the office, from home, on the road, and in countless locations in between. Read Now

New Products

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities