Researchers Creating Plants That React To Environmental Pollutants, Explosives

Someday, that potted palm in your living room might go from green to white, alerting you to a variety of nasty contaminants in the air, perhaps even explosives.

The stuff of science fiction you say? Not so, says a Colorado State University biologist whose research is funded in part by Homeland Security's Science and Technology Directorate (DHS S&T), as well as by the Defense Advanced Research Projects Agency (DARPA), the Office of Naval Research (ONR), and others.

Dr. June Medford and her team in the Department of Biology at Colorado State have shown that plants can serve as highly specific sentries for environmental pollutants and explosives. She's enabled a computer-designed detection trait to work in plants. How? Based on research so far, Medford says the detection abilities of some plants (tobacco is an example) are similar to, or even better, than those of a dog's snout, long the hallmark of a good detector. Best of all, the training time is nothing compared to that of a dog.

"The idea comes directly from nature," Medford said. "Plants can't run or hide from threats, so they've developed sophisticated systems to detect and respond to their environment. We've 'taught' plants how to detect things we're interested in and respond in a way anyone can see, to tell us there is something nasty around, by modifying the way the plant's proteins process chlorophyll. Our system, with improvements, may allow plants to serve as a simple and inexpensive means to monitor human surroundings for substances such as pollutants, explosives, or chemical agents."

The detection traits could be used in any plant and could detect multiple pollutants at once -- changes that can also be detected by satellite. While visible change in the plant is apparent after a day, the reaction can be remotely sensed within a couple of hours. A spectral imaging system designed specifically for the detection of de-greening biosensors would provide the fastest indication of a threat detected by the plants.

Computational design of the detection trait was initially done in collaboration with Professor Homme Hellinga at Duke University, and more recently with Professor David Baker at the University of Washington. The Baker and Hellinga laboratories used a computer program to redesign naturally-occurring proteins called receptors. These redesigned receptors specifically recognize a pollutant or explosive. Medford's lab then modifies these computer redesigned receptors to function in plants, and targets them to the plant cell wall where they can recognize pollutants or explosives in the air or soil near the plant. Once the substance is detected, an internal signal causes the plant to turn white.

Medford and her team want to speed up detection time. The initial or first-generation plants respond to an explosive in hours, but improvements are underway to reduce the response time to just a few minutes. A faster response time increases the likelihood of identifying the threat and preventing an attack.

"At this point in the research, it takes hours to achieve a visible change in the foliage," said Doug Bauer, DHS S&T's program manager on the research. "Ideally, we'd want the reaction to be considerably faster." In addition to faster response times, Bauer says, in the next generation of the research, the indicators may take place in a non-visible spectrum, such as infrared, by using color-changing methods other than the suppression of chlorophyll. That way, law enforcement equipped with the appropriate sensors would be alerted, but a terrorist would not be tipped off.

A decentralized, ubiquitous detection capability could allow the early detection of bomb-manufacturing sites, instead of waiting for a potential bomber to show up at a transportation hub or other target zone.

There are still many, many years of research to go before any possible deployment of plant sentinels. Once the research achieves a point where it may be possible to deploy, there are other considerations that will have to be taken into account and additional studies to be conducted. For example, USDA regulations stipulate that genetically-altered plants must go through a rigorous study on their impact to and interaction with the environment before they can be cultivated or planted in the United States.

This work could eventually be used for a wide range of applications such as security in airports or monitoring for pollutants such as radon, a carcinogenic gas that can be found in basements. Harnessing plants as bio-sensors allows for distributed sensing without the need for a power supply. "One day, plants may assist law enforcement officers in detecting meth labs or help emergency responders determine where hazardous chemicals are leaking," Bauer says. "The fact that DoD, DHS and a variety of other agencies contributed to funding this research is an indicator of the breadth of possibilities."

Financial support for this research was provided by the Defense Advanced Research Projects Agency (DARPA), the Office of Naval Research (ONR), the Bioscience Discovery Evaluation Grant Program through the Colorado Office of Economic Development and International Trade, the National Science Foundation (NSF), Department of Homeland Security Science and Technology Directorate (DHS S&T), and Gitam Technologies. Most recently, Medford and her team received a three-year, $7.9 million grant from the DoD's Defense Threat Reduction Agency.

The research from Medford's team appeared in the peer-reviewed journal PLoS ONE.

Featured

  • AI Is Now the Leading Cybersecurity Concern for Security, IT Leaders

    Arctic Wolf recently published findings from its State of Cybersecurity: 2025 Trends Report, offering insights from a global survey of more than 1,200 senior IT and cybersecurity decision-makers across 15 countries. Conducted by Sapio Research, the report captures the realities, risks, and readiness strategies shaping the modern security landscape. Read Now

  • Analysis of AI Tools Shows 85 Percent Have Been Breached

    AI tools are becoming essential to modern work, but their fast, unmonitored adoption is creating a new kind of security risk. Recent surveys reveal a clear trend – employees are rapidly adopting consumer-facing AI tools without employer approval, IT oversight, or any clear security policies. According to Cybernews Business Digital Index, nearly 90% of analyzed AI tools have been exposed to data breaches, putting businesses at severe risk. Read Now

  • Software Vulnerabilities Surged 61 Percent in 2024, According to New Report

    Action1, a provider of autonomous endpoint management (AEM) solutions, today released its 2025 Software Vulnerability Ratings Report, revealing a 61% year-over-year surge in discovered software vulnerabilities and a 96% spike in exploited vulnerabilities throughout 2024, amid an increasingly aggressive threat landscape. Read Now

  • Motorola Solutions Named Official Safety Technology Supplier of the Ryder Cup through 2027

    Motorola Solutions has today been named the Official Safety Technology Supplier of the 2025 and 2027 Ryder Cup, professional golf’s renowned biennial team competition between the United States and Europe. Read Now

  • Evolving Cybersecurity Strategies

    Organizations are increasingly turning their attention to human-focused security approaches, as two out of three (68%) cybersecurity incidents involve people. Threat actors are shifting from targeting networks and systems to hacking humans via social engineering methods, living off human errors as their most prevalent attack vector. Whether manipulated or not, human cyber behavior is leveraged to gain backdoor access into systems. This mainly results from a lack of employee training and awareness about evolving attack techniques employed by malign actors. Read Now

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.