Crystals Detect Threats to National Security

Using a crystal ball to protect homeland security might seem far-fetched, but researchers at Wake Forest University and Fisk University have partnered to develop crystals that can be used to detect nuclear threats, radioactive material or chemical bombs more accurately and affordably.

The research is made possible by a $900,000 grant from the Office of Nuclear Nonproliferation Research and Development of the National Nuclear Security Administration, within the U.S. Department of Energy.

The grant will support both universities’ continued research in the area of radiation detection, which ultimately could lead to improved detector devices for screening cargo containers at ports, airports and border crossings. It would detect trace amounts of radioactive or chemical material – similar to a CT scan or PET scan detecting a tumor in the human body – and lead to better medical diagnostics.

“This grant is an acknowledgement of Fisk and Wake Forest’s excellence and leadership in the field of radiation detection research,” said Fisk University Professor of Physics and Vice Provost Arnold Burger.

Researchers at Fisk and in national laboratories previously discovered that strontium iodide crystals doped with europium are able to detect and analyze radiation better than most other detection materials. Wake Forest researchers recently demonstrated the unexpectedly crucial role of specific parameters – electron and hole mobilities – needed to predict the best energy resolution of a given detector crystal.

Currently, expense is an issue because of the large quantities of the crystalline material ultimately needed for widely deployed screening devices. However, strontium iodide already performs much better than the most affordable detectors currently used, and the scientists are optimistic that with the right calculations and adjustments, crystals of the needed quality and size can be grown and produced affordably.

“Unexpected radiation situations are a fact of our modern world,” said Dr. Richard Williams, Professor of Physics at Wake Forest. “By improving radiation detection and diagnostics, our research will benefit medical advancement as well as international security.”

Featured

  • The Next Generation

    Video security technology has reached an inflection point. With advancements in cloud infrastructure and internet bandwidth, hybrid cloud solutions can now deliver new capabilities and business opportunities for security professionals and their customers. Read Now

  • Help Your Customer Protect Themselves

    In the world of IT, insider threats are on a steep upward trajectory. The cost of these threats - including negligent and malicious employees that may steal authorized users’ credentials, rose from $8.3 million in 2018 to $16.2 million in 2023. Insider threats towards physical infrastructures often bleed into the realm of cybersecurity; for instance, consider an unauthorized user breaching a physical data center and plugging in a laptop to download and steal sensitive digital information. Read Now

  • Enhanced Situation Awareness

    Did someone break into the building? Maybe it is just an employee pulling an all-nighter. Or is it an actual perpetrator? Audio analytics, available in many AI-enabled cameras, can add context to what operators see on the screen, helping them validate assumptions. If a glass-break detection alert is received moments before seeing a person on camera, the added situational awareness makes the event more actionable. Read Now

  • Transformative Advances

    Over the past decade, machine learning has enabled transformative advances in physical security technology. We have seen some amazing progress in using machine learning algorithms to train computers to assess and improve computational processes. Although such tools are helpful for security and operations, machines are still far from being capable of thinking or acting like humans. They do, however, offer unique opportunities for teams to enhance security and productivity. Read Now

Featured Cybersecurity

New Products

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings. 3